首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of near‐infrared (NIR) luminescent materials has emerged as a promising research field with important applications in solid‐state lighting (SSL), night‐vision‐readable displays, and the telecommunication industry. Over the past two decades, remarkable advances in the development of light‐emitting electrochemical cells (LECs) have stunned the SSL community, which has in turn driven the quest for new classes of stable, more efficient NIR emissive molecules. In this review, an overview of the state of the art in the field of near‐infrared light‐emitting electrochemical cells (NIR‐LEC) is provided based on three families of emissive compounds developed over the past 25 years: i) transition metal complexes, ii) ionic polymers, and iii) host–guest materials. In this context, ionic and conductive emitters are particularly attractive since their emission can be tuned via molecular design, which involves varying the chemical nature and substitution pattern of their ancillary ligands. Herein, the challenges and current limitations of the latter approach are highlighted, particularly with respect to developing NIR‐LECs with high external quantum efficiencies. Finally, useful guidelines for the discovery of new, efficient emitters for tailored NIR‐LEC applications are presented, together with an outlook towards the design of new NIR‐SSL materials.  相似文献   

2.
The in situ formation of a light‐emitting p–n or p–i–n junction in light‐emitting electrochemical cells (LECs) necessitates mixed ionic–electronic conductors in the active layer. This unique characteristic requires electronic, luminescent, and ionic ingredients that work synergistically in the LECs. The material requirements that lead to promising electroluminescent properties are discussed and the important components reported so far are surveyed. Particular attention is paid to the working mechanisms behind junction formation and stabilization to create efficient and stable electroluminescence in conjugated‐polymer‐based LECs. Keeping these fundamentals in mind explains how LEC devices have evolved from classic conjugated polymer blends into highly stable crosslinked, hybrid composite, and stretchable device architectures. To conclude, a future development strategy is proposed based on a dual approach: develop new materials specifically for LEC devices and explore novel ways to efficiently process and stabilize the p–i–n junction, which will drive improvements in both LEC external quantum efficiency and operating lifetime toward truly low‐cost solid‐state lighting applications.  相似文献   

3.
Since the birth of light‐emitting electrochemical cells (LECs) in 1995, white LECs (WLECs) still represent a milestone. To date, over 50 contributions have been reported, presenting record WLECs with brightness of up to 10 000 cd m?2, efficiencies of >10 cd A?1, and excellent color rendering index >90 in different contributions. This is achieved following three main strategies focused on modifying: i) the design of the emitters, that is, emissive aggregates, multiemissive mechanism, multifluorophoric emitters; ii) the active layer composition, that is, host–guest, multilayers, exciplex‐ and electroplex‐like emitting species systems; and iii) the device architecture, that is, tandem, photoactive filters, and microcavity/interfacial dipole effects. Herein, all of them are comprehensively discussed with respect to the above strategies in the frame of the type of emitters employed. Overall, this work highlights both the advances and challenges of the WLEC field.  相似文献   

4.
The combination of high efficiencies and long lifetime in a single light‐emitting electrochemical cell (LEC) device remain a major problem in LEC technology, preventing its application in commercial lighting devices. Three green light‐emitting cationic iridium‐based complexes of the general composition [Ir(C^N)2(N^N)][PF6] with 4‐Fppy (2‐(4‐fluorophenyl)pyridinato) as the cyclometalating C^N ligand and 1,10‐phenanthroline ( 1 ), 4,7‐diphenyl‐1,10‐phenanthroline (bathophenanthroline, bphen, 2 ), and 2,9‐dimethyl‐4,7‐diphenyl‐1,10‐phenanthroline (bathocuprione, dmbphen, 3 ) as ancillary N^N ligands are synthesized and characterized. Computational studies are carried out in order to compare the electronic structure of the three ionic transition metal complexes (iTMCs) and provide insights into their potential as LEC emitter materials. LECs are then fabricated with complexes 1 – 3 . Driven under a pulsed current, they display a high luminance and current and power efficiencies. As the LEC based on complex 2 displays the overall best device performance, including the longest lifetime of 474 h, it is selected for subsequent driving conditions optimization. An extraordinary power efficiency of 25 lm W?1 and current efficiency of 30 cd A?1 are achieved under optimized operation conditions with reduced current density, resulting in a long device lifetime of 720 h. Altogether, ligand design in iTMCs and optimization of the device driving conditions leads to a significant improvement in LEC performance.  相似文献   

5.
Light‐emitting electrochemical cells (LECs) have emerged as some of the simplest light‐emitting devices. Indeed, numerous LECs have been produced using fluorescent polymers; however, initial LEC structures require a mixture of polymers and electrolytes, thus strictly limiting their applicability. In contrast, recent advances in device technologies and material synthesis have opened a route for LECs using nonpolymeric materials. This progress report focuses on current developments in the device concepts, mechanisms, and characteristics of LECs that allow the utilization of nonpolymeric materials. First, the three primary device types, namely, electrochemically doped, ionic‐material, and electrostatically doped LECs, are categorized, and their distinct features are described. Second, electrochemically doped LECs based on small molecules and branched molecules are introduced. Then, an overview of the rapidly growing field of ionic‐material LECs, especially ionic transition metal complexes, ionic small molecules and perovskites, and their characteristics are provided. Following these results, recent achievements in solid‐state materials, such as inorganic single crystals, quantum dots, and 2D materials, as electrostatically doped LECs are highlighted. Finally, an overview and evaluation of these LECs reveal the key directions and remaining issues that must be overcome to further functionalize LECs, which provide a versatile approach for new lighting applications comprising emergent materials.  相似文献   

6.
7.
The use of biomaterials and bioinspired concepts in electronics will enable the fabrication of transient and disposable technologies within areas ranging from smart packaging and advertisement to healthcare applications. In this work, the use of a nonhalogenated biodegradable solid polymer electrolyte based on poly(ε‐caprolactone‐co‐trimethylene carbonate) and tetrabutylammonium bis‐oxalato borate in light‐emitting electrochemical cells (LECs) is presented. It is shown that the spin‐cast devices exhibit current efficiencies of ≈2 cd A?1 with luminance over ≈12 000 cd m?2, an order of magnitude higher than previous bio‐based LECs. By a combination of industrially relevant techniques (i.e., inkjet printing and blade coating), the fabrication of LEC devices on a cellulose‐based flexible biodegradable substrate showing lifetimes compatible with transient applications is demonstrated. The presented results have direct implications toward the industrial manufacturing of biomaterial‐based light‐emitting devices with potential use in future biodegradable/biocompatible electronics.  相似文献   

8.
This work demonstrates a novel proof‐of‐concept to implement pentacene derivatives as emitters for the third generation of light‐emitting electrochemical cells based on small‐molecules (SM‐LECs). Here, a straightforward procedure is shown to control the chromaticity of pentacene‐based lighting devices by means of a photoinduced cycloaddition process of the 6,13‐bis(triisopropylsilylethynyl) (TIPS)‐pentacene that leads to the formation of anthracene‐core dimeric species featuring a high‐energy emission. Without using the procedure, SM‐LECs featuring deep‐red emission with Commission Internationale d'Eclairage (CIE) coordinates of x = 0.69/y = 0.31 and irradiance of 0.4 μW cm?2 are achieved. After a careful optimization of the cycloaddition process, warm white devices with CIE coordinates of x = 0.36/y = 0.38 and luminances of 10 cd m?2 are realized. Here, the mechanism of the device is explained as a host–guest system, in which the dimeric species acts as the high‐energy band gap host and the low‐energy bandgap TIPS‐pentacene is the guest. To the best of the knowledge, this work shows the first warm white SM‐LECs. Since this work is based on the archetypal TIPS‐pentacene and the photoinduced cycloaddition process is well‐knownfor any pentacenes, this proof‐of‐concept could open a new way to use these compounds for developing white lighting sources.  相似文献   

9.
10.
Electroluminescent devices become warm during operation, and their performance can, therefore, be severely limited at high drive current density. Herein, the effects of this self‐heating on the operation of a light‐emitting electrochemical cell (LEC) are systematically studied. A drive current density of 50 mA cm?2 can result in a local device temperature for a free‐standing LEC that exceeds 50 °C within a short period of operation, which in turn induces premature device degradation as manifested in the rapidly decreasing luminance and increasing voltage. Furthermore, this undesired self‐heating for a free‐standing thin‐film LEC can be suppressed by the employment of a device architecture featuring high thermal conductance and a small emission‐area fill factor, since the corresponding improved heat conduction to the nonemissive regions facilitates more efficient heat transfer to the ambient surroundings. In addition, the reported differences in performance between small‐area and large‐area LECs as well as between flexible‐plastic and rigid‐glass LECs are rationalized, culminating in insights that can be useful for the rational design of LEC devices with suppressed self‐heating and high performance.  相似文献   

11.
Enhancing the efficiency and lifetime of light emitting electrochemical cells (LEC) is the most important challenge on the way to energy efficient lighting devices of the future. To avail this, emissive Ir(III) complexes with fluoro‐substituted cyclometallated ligands and electron donating groups (methyl and tert ‐butyl)‐substituted diimine ancillary (N^N) ligands and their associated LEC devices are studied. Four different complexes of general composition [Ir(4ppy)2(N^N)][PF6] (4Fppy = 2‐(4‐fluorophenyl)pyridine) with the N^N ligand being either 2,2′‐bipyridine ( 1 ), 4.4′‐dimethyl‐2,2′‐bipyridine ( 2 ), 5.5′‐dimethyl‐2,2′‐bipyridine ( 3 ), or 4.4′‐di‐tert ‐butyl‐2,2′‐bipyridine ( 4 ) are synthesized and characterized. All complexes emit in the green region of light with emission maxima of 529–547 nm and photoluminescence quantum yields in the range of 50.6%–59.9%. LECs for electroluminescence studies are fabricated based on these complexes. The LEC based on ( 1 ) driven under pulsed current mode demonstrated the best performance, reaching a maximum luminance of 1605 cd m?2 resulting in 16 cd A?1 and 8.6 lm W?1 for current and power efficiency, respectively, and device lifetime of 668 h. Compared to this, LECs based on ( 3 ) and ( 4 ) perform lower, with luminance and lifetime of 1314 cd m?2, 45.7 h and 1193 cd m?2, 54.9 h, respectively. Interestingly, in contrast to common belief, the fluorine content of the Ir‐iTMCs does not adversely affect the LEC performance, but rather electron donating substituents on the N^N ligands are found to dramatically reduce both performance and stability of the green LECs. In light of this, design concepts for green light emitting electrochemical devices have to be reconsidered.  相似文献   

12.
Since the first demonstration of light‐emitting electrochemical cells (LECs) in 1995, much effort has been made to develop this technology for display and lighting. A common LEC generally contains a single emissive layer blended with a salt, which provides mobile ions under a bias. Ions accumulated at electrodes facilitate electrochemical doping such that operation voltage is low even when employing high‐work‐function inert electrodes. The superior properties of simple device architecture, low‐voltage operation, and compatibility with inert metal electrode render LECs suitable for cost‐effective light‐emitting sources. In addition to enormous progress in developing novel emissive materials for LECs, optical engineering has been shown to improve device performance of LECs in an alternative way. Light outcoupling enhancement technologies recycle the trapped light and increase the light output from LECs. Techniques to estimate emission zone position provide a powerful tool to study carrier balance of LECs and to optimize device performance. Spectral tailoring of the output emission from LECs based on microcavity effect and localized surface plasmon resonance of metal nanoparticles improves the intrinsic emission properties of emissive materials by optical means. These reported optical techniques are overviewed in this review.  相似文献   

13.
Solid‐state white light‐emitting electrochemical cells (LECs) exhibit the following advantages: simple device structures, low operation voltage, and compatibility with inert metal electrodes. LECs have been studied extensively since the first demonstration of white LECs in 1997, due to their potential application in solid‐state lighting. This review provides an overview of recent developments in white LECs, specifically three major aspects thereof, namely, host–guest white LECs, nondoped white LECs, and device engineering of white LECs. Host–guest strategy is widely used in white LECs. Host materials are classified into ionic transition metal complexes, conjugated polymers, and small molecules. Nondoped white LECs are based on intra‐ or intermolecular interactions of emissive and multichromophore materials. New device engineering techniques, such as modifying carrier balance, color downconversion, optical filtering based on microcavity effect and localized surface plasmon resonance, light extraction enhancement, adjusting correlated color temperature of the output electroluminescence spectrum, tandem and/or hybrid devices combining LECs with organic light‐emitting diodes, and quantum‐dot light‐emitting diodes improve the device performance of white LECs by ways other than material‐oriented approaches. Considering the results of the reviewed studies, white LECs have a bright outlook.  相似文献   

14.
White‐light‐emitting electrochemical cells (WLECs) still represent a significant milestone, since only a few examples with moderate performances have been reported. Particularly, multiemissive white emitters are highly desired, as a paradigm to circumvent phase separation and voltage‐dependent emission color issues that are encountered following host:guest and multilayered approaches. Herein, the origin of the exclusive white ternary electroluminescent behavior of BN‐doped nanographenes with a B3N3 doping pattern (hexa‐perihexabenzoborazinocoronene) is rationalized, leading to one of the most efficient (≈3 cd A?1) and stable‐over‐days single‐component and single‐layered WLECs. To date, BN‐doped nanographenes have featured blue thermally activated delayed fluorescence (TADF). This doping pattern provides, however, white electroluminescence spanning the whole visible range (x/y CIE coordinates of 0.29–31/0.31–38 and average color rendering index (CRI) of 87) through a ternary emission involving fluorescence and thermally activated dual phosphorescence. This temperature‐dependent multiemissive mechanism is operative for both photo‐ and electroluminescence processes and holds over the device lifespan, regardless of the device architecture, active layer composition, and operating conditions. As such, this work represents a new stepping‐stone toward designing a new family of multiemissive white emitters based on BN‐doped nanographenes that realizes one of the best‐performing single‐component white‐emitting devices compared to the prior‐art.  相似文献   

15.
16.
Light‐emitting electrochemical cells (LECs) are one of the most promising technologies for solid‐sate lighting. Among them, LECs based on phosphorescent iridium(III) complexes have attracted significant research interest in the past 15 years, because of their high efficiency and tunable emission color across the entire visible spectrum. To fabricate white LECs for lighting, high‐performance blue LECs are the first prerequisite. Huge efforts have been devoted to improving the performances of blue LECs based on iridium(III) complexes either by developing new blue‐emitting complexes or by engineering the devices. Nevertheless, blue LECs have still shown much lower performances (brightness, efficiency, stability, etc.) compared to the red, orange‐red, yellow, and green counterpart devices. In particular, a single blue LEC with satisfactory blue‐color purity, high efficiency, and high stability is still missing. Here, the advances in blue‐emitting iridium(III) complexes for LECs and the device engineering on LECs using the complexes are reported. The challenges ahead are discussed, and future prospects are outlined.  相似文献   

17.
Large‐area, ultrathin light‐emitting devices currently inspire architects and interior and automotive designers all over the world. Light‐emitting electrochemical cells (LECs) and quantum dot light‐emitting diodes (QD‐LEDs) belong to the most promising next‐generation device concepts for future flexible and large‐area lighting technologies. Both concepts incorporate solution‐based fabrication techniques, which makes them attractive for low cost applications based on, for example, roll‐to‐roll fabrication or inkjet printing. However, both concepts have unique benefits that justify their appeal. LECs comprise ionic species in the active layer, which leads to the omission of additional organic charge injection and transport layers and reactive cathode materials, thus LECs impress with their simple device architecture. QD‐LEDs impress with purity and opulence of available colors: colloidal quantum dots (QDs) are semiconducting nanocrystals that show high yield light emission, which can be easily tuned over the whole visible spectrum by material composition and size. Emerging technologies that unite the potential of both concepts (LEC and QD‐LED) are covered, either by extending a typical LEC architecture with additional QDs, or by replacing the entire organic LEC emitter with QDs or perovskite nanocrystals, still keeping the easy LEC setup featured by the incorporation of mobile ions.  相似文献   

18.
The characteristic doping process in polymer light‐emitting electrochemical cells (LECs) causes a tradeoff between luminescence intensity and efficiency. Experiments and numerical modeling on thin film polymer LECs show that, on the one hand, carrier injection and transport benefit from electrochemical doping, leading to increased electron‐hole recombination. On the other hand, the radiative recombination efficiency is reduced by exciton quenching by polarons involved in the doping. Consequently, the quasi‐steady‐state luminescent efficiency decreases with increasing ion concentration. The transient of the luminescent efficiency shows a characteristic roll‐off while the current continuously increases, attributed to ongoing electrochemical doping and the associated exciton quenching. Both effects can be modeled by exciton polaron‐quenching via diffusion‐assisted Förster resonance energy transfer. These results indicate that the tradeoff between efficiency and intensity is fundamental, suggesting that the application realm of future LECs should be sought in high‐brightness, low‐production cost devices, rather than in high‐efficiency devices.  相似文献   

19.
Using a planar electrode geometry, the operational mechanism of iridium(III) ionic transition metal complex (iTMC)‐based light‐emitting electrochemical cells (LECs) is studied by a combination of fluorescence microscopy and scanning Kelvin probe microscopy (SKPM). Applying a bias to the LECs leads to the quenching of the photoluminescence (PL) in between the electrodes and to a sharp drop of the electrostatic potential in the middle of the device, far away from the contacts. The results shed light on the operational mechanism of iTMC‐LECs and demonstrate that these devices work essentially the same as LECs based on conjugated polymers do, i.e., according to an electrochemical doping mechanism. Moreover, with proceeding operation time the potential drop shifts towards the cathode coincident with the onset of light emission. During prolonged operation the emission zone and the potential drop both migrate towards the anode. This event is accompanied by a continuous quenching of the PL in two distinct regions separated by the emission line.  相似文献   

20.
Polymer light‐emitting electrochemical cells (LECs) offer an attractive opportunity for low‐cost production of functional devices in flexible and large‐area configurations, but the critical drawback in comparison to competing light‐emission technologies is a limited operational lifetime. Here, it is demonstrated that it is possible to improve the lifetime by straightforward and motivated means from a typical value of a few hours to more than one month of uninterrupted operation at significant brightness (>100 cd m?2) and relatively high power conversion efficiency (2 lm W?1 for orange‐red emission). Specifically, by optimizing the composition of the active material and by employing an appropriate operational protocol, a desired doping structure is designed and detrimental chemical and electrochemical side reactions are identified and minimized. Moreover, the first functional flexible LEC with a similar promising device performance is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号