首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The recently described gastrointestinal glutathione peroxidase (GI-GPx) is the fourth member of the family of the selenoenzymes glutathione peroxidases (GPx). In contrast to the more uniform distribution of, for example, the classical glutathione peroxidase (cGPx), it is expressed exclusively in the gastrointestinal tract and has, therefore, been suggested to function as a primary barrier against alimentary hydroperoxides. In order to get an idea of its relative importance we investigated its position in the hierarchy of selenoprotein expression. The selenium-dependent expression of GI-GPx was analyzed in comparison with that of other GPx types at the level of mRNA and protein in HepG2 and CaCo-2 cells. Furthermore, the selenocysteine insertion sequence (SECIS) efficiencies of GI-GPx, phospholipid hydroperoxide glutathione peroxidase (PHGPx) and cGPx in response to selenium were determined by a reporter-gene assay in human hepatoma cells and baby hamster kidney cells. GI-GPx mRNA levels increased during selenium deficiency, whereas cGPx mRNA levels decreased and PHGPx mRNA levels remained almost unaffected. In cells grown in selenium-poor media, all GPx-types were low in both activity and immunochemical reactivity. Upon selenium repletion immunoreactive GI-GPx protein reached a plateau after 10 h, whereas cGPx started to be expressed at 24 h and did not reach its maximum level before 3 days. SECIS efficiencies decreased in the order PHGPx > cGPx > GI-GPx. The augmentation of SECIS efficiencies by selenium was highest for cGPx and intermediate for PHGPx, whereas it was marginal for GI-GPx. The high mRNA stability under selenium restriction, the speed of biosynthesis upon selenium repletion and the marginal effect of selenium on the SECIS efficiency indicate that of the GPx isotypes, GI-GPx ranks highest in the hierarchy of selenoproteins and point to a vital role of GI-GPx in the gastrointestinal tract.  相似文献   

2.
An important cause of anoxia-induced nerve injury involves the disruption of the ionic balance that exists across the neuronal membrane. This loss of ionic homeostasis results in an increase in intracellular calcium, sodium, and hydrogen and is correlated with cell injury and death. Using time-lapse confocal microscopy, we have previously reported that nerve cell injury is mediated largely by sodium and that removing extracellular sodium prevents the anoxia-induced morphological changes. In this study, we hypothesized that sodium enters neurons via specific mechanisms and that the pharmacologic blockade of sodium entry would prevent nerve damage. In cultured neocortical neurons we demonstrate that replacing extracellular sodium with NMDG+ prevents anoxia-induced morphological changes. With sodium in the extracellular fluid, various routes of sodium entry were examined, including voltage-sensitive sodium channels, glutamate receptor channels, and sodium-dependent chloride-bicarbonate exchange. Blockade of these routes had no effect. Amiloride, however, prevented the morphological changes induced by anoxia lasting 10, 15, or 20 min. At doses of 10 microM-1 mM, amiloride protected neurons in a dose-dependent fashion. We argue that amiloride acts on a Na+-dependent exchanger (e.g., Na+-Ca2+) and present a model to explain these findings in the context of the neuronal response to anoxia.  相似文献   

3.
We have developed a monoclonal antibody (BAT) to Daudi B lymphoblastoid cell line membranes. The antibody was selected for its ability to stimulate lymphocyte proliferation. Splenocytes of BALB/c or C57BL mice given i.v. injections of 10 micrograms/mouse of BAT exhibited increased proliferation and cytotoxic activity. A single i.v. administration of BAT monoclonal antibody 2 weeks after B16 melanoma cell inoculation resulted in a striking antitumor effect as manifested by the elimination of lung metastases and prolonged survival of the treated mice. BAT monoclonal antibody was also effective in the regression of tumors in mice bearing 3LL (Lewis lung carcinoma) and MCA-105 (fibrosarcoma). Transfer of 10(7)-10(8) splenocytes from mice that had been given injections of BAT to B16- or 3LL-inoculated recipients led to a reduction of lung metastases. Splenocytes from B16-inoculated mice that were cured by BAT were more effective than those from mice treated with BAT alone against recipients bearing either B16 or 3LL tumors. The antitumor activity of BAT is related to its immunostimulatory properties.  相似文献   

4.
Li+ net-transfer across cell membranes was studied on human erythrocytes and ghosts preloaded with 1-2 mM Li+ and incubated in saline media of varying composition at initial thermodynamic equilibrium for Li+. The following results were obtained: 1. Li+ is extruded from glycolyzing erythrocytes against an electrochemical gradient until a steady-state Li+ distribution is established after 24-28 h. 2. The initial rate of Li+ extrusion is not altered by ouabain or by reduction of ATP levels to less than 25% of the normal value. 3. Replacement of external Na+ by K+ or choline+ abolishes the establishment of an electrochemical Li+ gradient. 4. The Li+ distribution ratio Lie+/Lii+ increases proportional to the ratio Nae+/Nai+ at constant extravellular K+ concentrations. 5. In ghost suspension an uphill Li+ transport is driven by an oppositely directed Na+ gradient. The direction of the Li+ uphill transport can be reversed by reversing the Na+ gradient. From the results it is concluded that the Li+ uphill transport across human red cell membranes is mediated by a Na+-dependent Li+ counter-transport system. This system is not inhibited by ouabain and does not appear to be identical to the Na+-Na+ exchange system described by Garrahan and Glynn.  相似文献   

5.
BACKGROUND: We examined the effect of growth hormone (GH) administration on the psychological capacity and sense of well-being in 25 patients with adult-onset GH-deficiency (GHD). METHODS: Very low dosages [0.5-1.0 UIday(-1) s.c. at bed-time] of recombinant human (rh)-GH (n = 13; aged 50+/-15 years, mean+/-SD) or placebo (n = 12, 53+/-14 years) were given at random for a 6-month period. Quality of life was assessed by using the Italian version of the self-rating Kellner Symptom Questionnaire (KSQ) and the Hamilton Depression Scale (HDS). RESULTS: No difference in insulin-like growth factor I (IGF-I) levels was noted between groups on entry to the study. A significant increase in IGF-I [month 0 56.2+/-10.4 microg L(-1) vs. month 6 125.7+/-16.7 microg L(-1); P < 0.001] levels was noted only in the rh-GH-treated group. There was no difference in overall scores on the KSQ between the rh-GH-treated and control groups on entry. A slight, non-significant, decrease in overall scores was noted in both groups of subjects. Subsection analysis of items from the KSQ did not show significant differences in either group during the 6-month period. A significant decrease (month 0 28+/-1 vs. month 6 25+/-1; P = 0.02) in the HDS score was noted in rh-GH-treated but not in placebo-treated patients. There was a significant correlation (rs, -0.56, P = 0.05) between increase in IGF-I levels and decrease in HDS scores in rh-GH treated patients. CONCLUSION: The data demonstrate that low rh-GH dosages significantly improve psychological profiles as rated by HDS evaluation in adult-onset patients with GHD. On the other hand, a 6-month period of treatment does not produce any significant differences in quality of life as measured by KSQ between treated patients and placebo controls.  相似文献   

6.
The effects of acetylcholine (ACh) and histamine (His) on the membrane potential and current were examined in JR-1 cells, a mucin-producing epithelial cell line derived from human gastric signet ring cell carcinoma. The tight-seal, whole cell clamp technique was used. The resting membrane potential, the input resistance, and the capacitance of the cells were approximately -12 mV, 1.4 G ohms, and 50 pF, respectively. Under the voltage-clamp condition, no voltage-dependent currents were evoked. ACh or His added to the bathing solution hyperpolarized the membrane by activating a time- and voltage-independent K+ current. The ACh-induced hyperpolarization and K+ current persisted, while the His response desensitized quickly (< 1 min). These effects of ACh and His were mediated predominantly by m3-muscarinic and H1-His receptors, respectively. The K+ current induced by ACh and His was inhibited by charybdotoxin, suggesting that it is a Ca(2+)-activated K+ channel current (IK.Ca). The measurement of intracellular Ca2+ ([Ca2+]i) using Indo-1 revealed that both agents increased [Ca2+]i with similar time courses as they increased IK.Ca. When EGTA in the pipette solution was increased from 0.15 to 10 mM, the induction of IK.Ca by ACh and His was abolished. Thus, both ACh and His activate IK.Ca by increasing [Ca2+]i in JR-1 cells. In the Ca(2+)-free bathing solution (0.15 mM EGTA in the pipette), ACh evoked IK.Ca transiently. Addition of Ca2+ (1.8 mM) to the bath immediately restored the sustained IK.Ca. These results suggest that the ACh response is due to at least two different mechanisms; i.e., the Ca2+ release-related initial transient activation and the Ca2+ influx-related sustained activation of IK.Ca. Probably because of desensitization, the Ca2+ influx-related component of the His response could not be identified. Intracellularly applied inositol 1,4,5-trisphosphate (IP3), with and without inositol 1,3,4,5-tetrakisphosphate (IP4), mimicked the ACh response. IP4 alone did not affect the membrane current. Under the steady effect of IP3 or IP3 plus IP4, neither ACh nor His further evoked IK.Ca. Intracellular application of heparin or of the monoclonal antibody against the IP3 receptor, mAb18A10, inhibited the ACh and His responses in a concentration-dependent fashion. Neomycin, a phospholipase C (PLC) inhibitor, also inhibited the agonist-induced response in a concentration-dependent fashion. Although neither pertussis toxin (PTX) nor N-ethylmaleimide affected the ACh or His activation of IK,Ca, GDP beta S attenuated and GTP gamma S enhanced the agonist response.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
8.
The effect of the host system on the pathogenicity, immunogenicity, and antigenicity of infectious bursal disease virus (IBDV) was investigated. One classic (SAL) and one variant strain (IN) of IBDV were passaged separately six times in three host systems, namely BGM-70 continuous cell line, primary chicken embryo fibroblast (CEF) cells, or embryonating chicken eggs (embryos) or one time in the bursa of Fabricius (BF) of specific-pathogen-free (SPF) chickens. Passage in BGM-70 cells or CEF cells resulted in loss of pathogenicity, but viruses passaged in embryos or BF maintained their pathogenicity. For the immunogenicity study, the viruses described above were used to prepare live and inactivated vaccines, containing 10(3) mean embryo infectious doses (EID50s) and 10(5) EID50s respectively. These vaccines induced different levels of protection. It was concluded that the antigen titration methodology employing embryonating chicken eggs was not suitable for titration of viruses propagated in other host systems because of varying degrees of adaptation and/or pathogenicity of the viruses resulting in variability in antigen mass of the tested vaccines. To test this assumption, an antigen-capture enzyme-linked immunosorbent assay was used as a titration system to compare the antigenicity of viruses propagated in BGM-70 cells or BF. Preparations containing similar antigen masses were inactivated then inoculated into two age groups of SPF chickens and antibody titers were monitored. During the experimental period, the geometric mean virus-neutralizing (VN) antibody titers of the vaccinated groups did not differ significantly (P > 0.05).  相似文献   

9.
Glutamate transport across the plasma membrane of neurons and glia is powered by the transmembrane electrochemical gradients for sodium, potassium, and pH, but there is controversy over the number of Na+ cotransported with glutamate. The stoichiometry of glutamate transporters is important because it determines a lower limit to the extracellular glutamate concentration, [glu]o, in both normal and pathological conditions. We used whole-cell clamping to study the stoichiometry of the glial transporter GLT-1, the most abundant glutamate transporter in the brain, expressed under control of the Tet-On system in a Chinese hamster ovary (CHO) cell line selected for low endogenous glutamate transport. After the induction of GLT-1 expression with doxycycline, glutamate evoked a Na+-dependent inward current with the voltage dependence and pharmacology of GLT-1 and acidified the cell cytoplasm. Raising [K+]o around cells clamped with electrodes containing sodium and glutamate evoked an outward reversed uptake current. These responses were reduced by the specific GLT-1 blocker dihydrokainate (DHK). DHK evoked an outward current with NO3-, but not with Cl-, as the main intracellular anion, suggesting that the anion conductance of the transporter is active even without external glutamate but generates little current in the absence of highly permeable anions like NO3-. Measuring the reversal potential of the transporter current in various ionic conditions suggested that the transport of one glutamate anion is coupled to the cotransport of three Na+ and one H+ and to the countertransport of one K+. This suggests that in ischemia, when [K+]o rises to 60 mM, the reversal of glutamate transporters will raise [glu]o to >50 microM.  相似文献   

10.
A human mammary epithelial cell line (SKBr3) has been identified in which fatty acid synthetase constitutes up to 28%, by weight of the cytosolic proteins. The enzymes has been purified to near homogeneity from this cell line and some of its properties studied. In common with fatty acid synthetases from other animal tissues, the enzyme is a 480 000 dalton dimer of similar molecular weight subunits, it synthesizes predominantly palmitic acid and is inactive in the absence of free coenzyme A. The kinetic properties and amino acid composition of the enzyme are also similar to those of fatty acid synthetases from various tissues of other animals. Appreciable structural resemblance between human and rodent fatty acid synthetases is indicated by studies on the immunological cross-reactivities of these enzymes.  相似文献   

11.
Incubation of human lymphocytes with ConA causes an increase in [Na+]i and a decrease in [K+]i. This effect is not due to the experimental washing procedure, but is due to the ConA-induced increase in permeability which is not fully compensated by the increase in active transport. The ConA-induced increase in 42K+ uptake consists of an increase in leak flux which is independent of [Na+]o, and of an increase in pump flux which is dependent on [Na+]o. The increase in leak flux may be caused by increased membrane fluidity. The increase in pump flux may be produced by the increased [Na+]i and by a stimulation of Na+, K+ATPase.  相似文献   

12.
13.
14.
Galactocerebroside (GalC) and sulfatide are major constituent lipids in vertebrate myelin. Their precise immunolocalization in electron microscopy so far has been hampered by the fact that lipids are not immobilized by chemical fixation and thus get extracted during dehydration with organic solvents. Here, we examined the suitability of cryotechniques for the preservation and immunohistochemical localization of myelin glycolipids in rat brain at the ultrastructural level. Native cerebral cortex tissue, obtained by fine-needle biopsy, was cryoimmobilized by high-pressure freezing and dehydrated by freeze-substitution before embedding in Epon. This procedure resulted in an excellent preservation of brain ultrastructure. Concomitantly, immunogold labeling of ultrathin sections with the well-defined monoclonal antibodies (mAbs) O1, O4, and R-mAb, which were shown to react with GalC and/or sulfatide and some structurally related glycolipids, revealed a good conservation of relevant epitopes. These data suggest that in adult rat cerebral cortex, the most relevant antigens recognized by R-mAb, O1, and O4, namely GalC and sulfatide, are exclusively expressed in myelin structures. Because these mAbs are common markers for the identification of developing oligodendrocytes, this "postembedding glycolipid-labeling technique" holds great potential for studying oligodendroglial differentiation in normal and pathological conditions at the ultrastructural level.  相似文献   

15.
We previously showed in a human T cell line (CEM-C12 cells) that Cd2+ induced gene expression of stress proteins, metallothionein-IIA and heat shock protein 70 in a time- and dose-dependent manner. In the present study, CEM-C12 cells were pretreated for 24 h with 1 microM Cd2+ and then challenged with toxic concentrations of this metal. We found that maximal expression of the metallothionein-IIA and heat shock protein 70 genes was increased and this maximal level occurred at higher Cd2+ toxic concentrations. Actinomycin D chase experiments indicated that Cd2+ pretreatment did not modify metallothionein-IIA mRNA stability. The modulatory effect of Cd2+ pretreatment was dose-dependent from 100 pM to 1 microM. Such pretreatment also enhanced resistance to Cd2+ toxicity. Finally, verapamil, a calcium/potassium channel blocker displaced the dose-response curve for Cd2+ toxicity as well as metallothionein-IIA and heat shock protein 70 gene expression to higher Cd2+ concentrations.  相似文献   

16.
OBJECTIVE: Amino acid transport and its regulation in vascular endothelial cells remains a largely unexplored area. In this study, we evaluated alanine transport in bovine aortic endothelial cells to assess possible mechanisms of regulation. METHODS: Alanine transport into confluent monolayers of endothelial cells was measured using 100 microM [3H]alanine in the presence and absence of external Na+, in cells deprived of serum for 24 hr (SD), and in SD cells exposed to 10% serum (S) for 3 hr (SD + S cells). RESULTS: Our results indicate that although SD did not significantly affect the Na(+)-independent transport of alanine when compared to normal cells, serum addition to serum-deprived cells markedly stimulated the Na(+)-dependent uptake of this amino acid through system A. The stimulation of alanine transport pathway(s) by serum was totally abolished by pretreatment of endothelial cells with 10 microM cycloheximide, suggesting a role of protein synthesis. Serum also induced a marked increase in calcium recycling at the cell membrane, suggesting that calcium is a key element of the serum signaling pathway. Indeed, both BAPTA (20 microM), a cellular calcium chelator, and thapsigargin (1 microM), an agent that depletes intracellular calcium stores, prevented the stimulation of alanine uptake by serum. Finally, pertussis toxin (400 ng/ml), an agent known to inactivate certain G-protein-dependent pathways, significantly reduced the serum-dependent 45Ca uptake and [3H]alanine entry. However, the protein kinase C activator PMA (100 nM), significantly reduced the stimulation of alanine uptake by serum but did not affect the stimulation of calcium uptake. CONCLUSIONS: Altogether these findings suggest that cell calcium is involved in the regulation of system A by serum in vascular endothelial cells.  相似文献   

17.
BACKGROUND: We previously demonstrated that vasopressin (AVP) produces a sustained increase in Na+ reabsorption by the isolated perfused cortical collecting duct (CCD) from rats on a normal diet, and that this effect is synergistic with that of pharmacological doses of deoxycorticosterone (DOC) or physiological levels of aldosterone. The present experiments examined the effect of AVP under the more physiological circumstances when plasma aldosterone was elevated by prior volume depletion. METHODS: Rats were volume depleted by a single dose of furosemide followed by a low-salt diet (0.3% NaCl) for four to nine days. Some of these rats were also implanted with a pellet containing 2.5 mg DOC. Rats in a third group were not injected with furosemide but were implanted with the DOC pellet and maintained on a standard (approximately 1% NaCl) diet. CCD were perfused and the lumen-to-bath Na+ flux (JNA), transepithelial voltage (VT), and osmotic water permeability (Pf) were measured in the presence and absence of 200 pm AVP. RESULTS: Although Na+ depletion by a single injection of furosemide and the low salt diet elevated plasma aldosterone and Vt, JNA remained low and there was a decreased response to AVP in comparison with DOC-treated rats on a standard diet. In CCD from rats on the low salt-diet with DOC, JNa was less than observed in CCD from DOC-treated rats on a standard diet. AVP-dependent Pf in CCD from rats on the low salt-diet, with or without DOC treatment, was also markedly lower. CONCLUSIONS: We interpret the results to demonstrate that maximal rates of Na+ reabsorption in the CCD depend not only on the synergistic stimulatory effects of aldosterone and AVP, but also require normal to high rates of salt delivery in vivo for the effects of the hormones on Na+ transport to be maximized in vitro.  相似文献   

18.
We recently showed that treatment with actin antagonists perturbed stomatal behavior in Commelina communis L. leaf epidermis and therefore suggested that dynamic changes in actin are necessary for signal responses in guard cells (M. Kim, P.K. Hepler, S.O. Eun, K.-S. Ha, Y. Lee [1995] Plant Physiol 109: 1077-1084). Here we show that actin filaments of guard cells, visualized by immunofluorescence microscopy, change their distribution in response to physiological stimuli. When stomata were open under white-light illumination, actin filaments were localized in the cortex of guard cells, arranged in a pattern that radiates from the stomatal pore. In marked contrast, for guard cells of stomata closed by darkness or by abscisic acid, the actin organization was characterized by short fragments randomly oriented and diffusely labeled along the pore site. Upon abscisic acid treatment, the radial pattern of actin arrays in the illuminated guard cells began to disintegrate within a few minutes and was completely disintegrated in the majority of labeled guard cells by 60 min. Unlike actin filaments, microtubules of guard cells retained an unaltered organization under all conditions tested. These results further support the involvement of actin filaments in signal transduction pathways of guard cells.  相似文献   

19.
Proton magnetic resonance spectroscopy (1H MRS) and DNA flow cytometry were used to monitor the effects of the cationic lipophilic phosphonium salt and potential antineoplastic agent tetraphenylphosphonium chloride (TPP) on the transformed human breast cell line HBL-100. TPP treatment for 48 hr was cytostatic at low concentrations and cytotoxic at higher concentrations with an IC50 of 55 microM as measured by Trypan blue exclusion. At micromolar concentrations, TPP caused a significant increase in the methylene MR signal arising from mobile lipid as measured by the ratio of the lipid CH2 peak height to either the CH3 peak height (internal referencing) or the peak height for p-aminobenzoic acid (PABA) as an external reference in a co-axial capillary within the sample. Over the same concentration range, TPP caused a slowing of passage through S phase as demonstrated by a significant depletion of cells in G2/M phase with a concurrent but non-significant increase in cells in S. Time-dependent increases in MR-visible lipid were observed with 2 microM TPP treatment, and the removal of TPP from the culture medium caused no significant reduction in mobile lipid. Two-dimensional 1H-1H COSY spectra of TPP-treated HBL-100 cells revealed concentration-dependent increases in cross-peak volume ratios arising from lipid acyl chains relative to both internal (lysine, polyamines) and external (PABA) standards. Increases in choline and glycerophosphocholine cross-peak volume ratios were observed, indicating that the catabolism or rearrangement of phospholipids may be responsible for the observed MR-visible lipid increases.  相似文献   

20.
An in vitro model of acquired melphalan resistance was developed by serial incubation of an MCF-7 human breast cancer cell line in increasing concentrations of melphalan. The resulting derivative cell line, Me1R MCF-7, was 30-fold resistant to melphalan. Uptake studies demonstrated decreased initial melphalan accumulation in Me1R MCF-7 cells. Inverse-reciprocal plots of initial melphalan uptake revealed a 4-fold decrease in the apparent Vmax of Me1R MCF-7 compared with WT MCF-7 (516 amol cell-1 min-1 vs 2110 amol cell-1 min-1 respectively) as well as a decrease in the apparent Kt (36 microM vs 70 microM respectively). Two amino acid transporters have previously been identified as melphalan transporters: system L, which is sodium-independent and inhibited by 2-amino-bicyclo[2,2,1]heptane-2-carboxylic acid (BCH), and system ASC which is sodium dependent and unaffected by BCH. At low concentrations of melphalan (3-30 microM), 1mM BCH competition eliminated the differences between the two cell lines, thus implicating an alteration of the system L transporter in the transport defect in the resistant cells. Me1R MCF-7 cells were also evaluated for glutathione-mediated detoxification mechanisms associated with melphalan resistance. There was no difference between Me1R MCF-7 and WT MCF-7 in glutathione content, glutathione-S-transferase activity and expression of pi class glutathione S-transferase RNA. In addition, buthionine sulfoximine did not reverse melphalan resistance in Me1R MCF-7 cells. Therefore, Me1R MCF-7 cells provide an in vitro model of transport-mediated melphalan resistance in human breast cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号