首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly porous scaffold plays an important role in bone tissue engineering, which becomes a promising alternative approach for bone repair since its emergence. The objective of this work was to blend poly (є-caprolactone) (PCL) with chitosan (CS) for the purpose of preparation of porous scaffold. A simple unique method was employed under room-temperature condition to blend the two components together without separation of two phases. The reaction leads to formation of sponge-like porous 5, 10, 15 and 20 wt% CS composites. XRD, IR and SEM were used to determine components and morphology of the composites. DSC studies indicated that the miscibility of the two components. And pore volume fractures of composites were determined by a simple method in which a pycnometer was used. The results show that CS is successfully commingled into PCL matrix, and adding CS into PCL will not damage the crystalline structure of PCL. The composite shows no signs of phase separation and presents a unique porous structure under SEM observation. The porosity of composite increased with the increase of the content of CS in the composite. The highest porosity reached to 92% when CS content increased to 20 wt%. The mechanism of formation of this unique porous structure is also discussed.  相似文献   

2.
PEEK-HA-CF复合材料的力学性能和体外生物活性   总被引:2,自引:0,他引:2  
制备PEEK-HA-CF复合材料,研究了引入CF对其力学性能和体外生物活性的影响.结果表明,CF的引入显著提高了PEEK-HA-CF的强度和模量,且其强度和模量在一定范围内具有更大的可设计性,能够在较宽的范围内满足与人体承力骨力学性能的良好匹配;PEEK-HA-CF复合材料具有良好的生物活性.  相似文献   

3.
Designing tissue engineering scaffolds with the required mechanical properties and favourable microstructure to promote cell attachment, growth and new tissue formation is one of the key challenges facing the tissue engineering field. An important class of scaffolds for bone tissue engineering is based on bioceramics and bioactive glasses, including: hydroxyapatite, bioactive glass (e.g. Bioglass®), alumina, TiO2 and calcium phosphates. The primary disadvantage of these materials is their low resistance to fracture under loads and their high brittleness. These drawbacks are exacerbated by the fact that optimal scaffolds must be highly porous (>90% porosity). Several approaches are being explored to enhance the structural integrity, fracture strength and toughness of bioceramic scaffolds. This paper reviews recent proposed approaches based on developing bioactive composites by introducing polymer coatings or by forming interpenetrating polymer-bioceramic microstructures which mimic the composite structure of bone. Several systems are analysed and scaffold fabrication processes, microstructure development and mechanical properties are discussed. The analysis of the literature suggests that the scaffolds reviewed here might represent the optimal solution and be the scaffolds of choice for bone regeneration strategies.  相似文献   

4.
Polyanionic collagen obtained from bovine pericardial tissue submitted to alkaline hydrolysis is an acellular matrix with strong potential in tissue engineering. However, increasing the carboxyl content reduces fibril formation and thermal stability compared to the native tissues. In the present work, we propose a chemical protocol based on the association of alkaline hydrolysis with 1,4-dioxane treatment to either attenuate or revert the drastic structural modifications promoted by alkaline treatments. For the characterization of the polyanionic membranes treated with 1,4-dioxane, we found that (1) scanning electron microscopy (SEM) shows a stronger reorientation and aggregation of collagen microfibrils; (2) histological evaluation reveals recovering of the alignment of collagen fibers and reassociation with elastic fibers; (3) differential scanning calorimetry (DSC) shows an increase in thermal stability; and (4) in biocompatibility assays there is a normal attachment, morphology and proliferation associated with high survival of the mouse fibroblast cell line NIH3T3 in reconstituted membranes, which behave as native membranes. Our conclusions reinforce the ability of 1,4-dioxane to enhance the properties of negatively charged polyanionic collagen associated with its potential use as biomaterials for grafting, cationic drug- or cell-delivery systems and for the coating of cardiovascular devices.  相似文献   

5.
Scaffolds of crosslinked poly(ethyl-acrylate) were prepared by polymerizing the monomer over a template made from Nylon fabrics compressed with different pressures; cylindrical pores in three dimensions of around 80 microns were obtained. Sample porosity and their mechanical, thermal and morphological properties were measured. Different models were analysed with the finite element method, studying the effect of the pore size and geometry on the effective properties of the scaffolds. The diameter of the pore did not influence the effective mechanical properties of the scaffold. The densification on compression of the scaffold due to pore collapse was identified on the stress–strain curve, and a correlation between the onset of this process on that curve and scaffold porosity was established.  相似文献   

6.
Magnesium alloy (ZK60A) matrix composites reinforced with 2.5, 5, 7.5 and 10 wt.% calcium polyphosphate particles, which were sphere-like in shape with average size of about 750 nm, were fabricated by powder metallurgy. The microstructure, mechanical properties and degradation behavior in physiological saline of the composites were investigated. The obtained results show that ultrafine calcium polyphosphate particles uniformly distribute in the ZK60A matrices without voids for the composites containing 2.5 and 5 wt.% calcium polyphosphate. For the composites containing 7.5 and 10 wt.% calcium polyphosphate, however, calcium polyphosphate particles agglomerate in the ZK60A matrices, and some obvious voids appear. The ultimate tensile strengths, yield strengths and elastic moduli of the composites tend to increase when the calcium polyphosphate contents increase from 0 to 5 wt.%, however, appear to decrease with the further increase of calcium polyphosphate from 5 to 10 wt.%. The weight losses of the composites, pH values and Mg ion concentrations of the solutions immersing the composites gradually decrease with increase of calcium polyphosphate content, which indicates that the addition of more calcium polyphosphate into ZK60A alloy results in significant degradation slow-up of the composites. This can be attributed to the formation of dense corrosion product layers on the composites. The composites have good mechanical properties and controllable degradation rates and thereby have potential to be used as load-bearing bone implants.  相似文献   

7.
Recently, the mankind has realized that unless environment is protected, he himself will be threatened by the over consumption of natural resource as well as substantial reduction of fresh air produced in the world. Conservation of forests and optimal utilization of agricultural and other renewable resources like solar and wind energies, and recently, tidal energy have become important topics worldwide. In such concern, the use of renewable resources such as plant and animal based fibre-reinforce polymeric composites, has been becoming an important design criterion for designing and manufacturing components for all industrial products. Research on biodegradable polymeric composites, can contribute for green and safe environment to some extent. In the biomedical and bioengineered field, the use of natural fibre mixed with biodegradable and bioresorbable polymers can produce joints and bone fixtures to alleviate pain for patients. In this paper, a comprehensive review on different kinds of natural fibre composites will be given. Their potential in future development of different kinds of engineering and domestic products will also be discussed in detail.  相似文献   

8.
An overview about the development of porous bioresorbable composite materials for applications as scaffolds in tissue engineering is presented. A thermally induced phase separation method was developed to fabricate porous foam-like structures of poly(lactide-co-glycolide) (PLGA) containing bioactive glass particle additions (up to 50 wt.%) and exhibiting well-defined, oriented and interconnected porosity. The in vitro bioactivity and the degradability of the composite foams were investigated in contact with phosphate buffer saline (PBS). Weight loss, water absorption and molecular weight measurements were used to monitor the polymer degradation after incubation periods of up to 7 weeks in PBS. It was found that the presence of bioactive glass retards the polymer degradation rate for the time period investigated. The present results show a way of controlling the in vitro degradation behaviour of PLGA porous composite scaffolds by tailoring the concentration of bioactive glass.  相似文献   

9.
We present a novel indentation method for characterizing the viscoelastic properties of alginate and agarose hydrogel based constructs, which are often used as a model system of soft biological tissues. A sensitive long working distance microscope was used for measuring the time-dependent deformation of the thin circular hydrogel membranes under a constant load. The deformation of the constructs was measured laterally. The elastic modulus as a function of time can be determined by a large deformation theory based on Mooney-Rivlin elasticity. A viscoelastic theory, Zener model, was applied to correlate the time-dependent deformation of the constructs with various gel concentrations, and the creep parameters can therefore be quantitatively estimated. The value of Young's modulus was shown to increase in proportion with gel concentration. This finding is consistent with other publications. Our results also showed the great capability of using the technique to measure gels with incorporated corneal stromal cells. This study demonstrates a novel and convenient technique to measure mechanical properties of hydrogel in a non-destructive, online and real-time fashion. Thus this novel technique can become a valuable tool for soft tissue engineering.  相似文献   

10.
Polypyrrole (PPy), the earliest prepared conducting polymer, has good biocompatibility, easy synthesis and flexibility in processing. Compared with metal and inorganic materials, doped PPy has better mechanical match with live tissue, resulting in its many applications in biomedical field. This mini-review presents some information on specific PPy properties for tissue engineering applications, including its synthesis, doping, bio-modiflcation. Although some challenges and unanswered problems still remain, PPy as novel biomaterial has promoted the development tissue engineering for its clinical application in the future.  相似文献   

11.
壳聚糖支架在组织工程中的应用   总被引:15,自引:1,他引:15  
综述了壳聚糖作为细胞生长载体在软骨组织工程,骨组织工程和皮肤组织工程等方面的应用进展,表明壳聚糖有望成为优异的组织工程支架材料。  相似文献   

12.
A powder derivative of acid pre-hydrolysis processing of cellulosic wastes, known as cellulignin, was used as filler in resin matrix composites. The flexural mechanical properties of cellulignin-polyester, epoxy or urea-formaldehyde matrix composites was evaluated. The results obtained show that the urea-formaldehyde and epoxy based composites can be used as alternative materials for low cost and low strength applications. Their advantages over the common wooden agglomerates or composites are presented and are based on the fact that cellulignin can be obtained virtually from any cellulosic waste.  相似文献   

13.
This work investigates the mechanical behavior of mycelium composites reinforced with biodegradable agro-waste particles. In the composite, the mycelium acts as a supportive matrix which binds reinforcing particles within its filamentous network structure. The compressive behavior of mycelium composites is investigated using an integrated experimental and computational approach. The experimental results indicate that the composite mimics the soft elastic response of pure mycelium at small strains and demonstrates marked stiffening at larger strains due to the densification of stiff particles. The composite also exhibits the characteristic stress softening effect and hysteresis under cyclic compression previously observed for pure mycelium. To gain further insight into the composite behavior, a three-dimensional finite element model based on numerical homogenization technique is presented. Model validation is performed by direct comparison with experiments, and a parametric study of the effect of mycelium density and particle size is discussed.  相似文献   

14.
Concepts concerning the mechanical properties of cord-rubber composites are examined. The rôle of boundary conditions in the calculation of the effective composite properties is discussed. It is shown that certain effective properties are significantly dependent on the applied boundary, conditions on the model and on the test specimen. Properties calculated from models, ranging from one dimensional analysis to the three dimensional finite element approach, are compared with some published experimental data.  相似文献   

15.
This paper gives an overview of utilising natural textile materials as reinforcements for engineering composites applications. The definition and types of textile materials are addressed to provide readers a thoughtful view on the role of these materials in a structural composite system. Available material properties of natural textile and their composites are critically reviewed here. In general, these materials are categorised into fibre, yarn and fabric forms. The load bearing capacity of natural textile fibre reinforced polymer composites is governed by the quantity, alignment and dispersion properties of fibres. It has been found that the natural fibre reinforced composites are limited to use in low to medium load bearing applications. However, a limited research work has been performed to date and there is a significant gap between the high performance textile fabric and their use as reinforcement in fibre reinforced composite materials.  相似文献   

16.
Electrospinning is an extremely promising method for the preparation of tissue engineering (TE) scaffolds. This technique provides nonwovens resembling in their fibrillar structures those of the extracellular matrix (ECM), and offering large surface areas, ease of functionalization for various purposes, and controllable mechanical properties. The recent developments toward large-scale productions combined with the simplicity of the process render this technique very attractive. Progress concerning the use of electrospinning for TE applications has advanced impressively. Different groups have tackled the problem of electrospinning for TE applications from different angles. Nowadays, electrospinning of the majority of biodegradable and biocompatible polymers, either synthetic or natural, for TE applications is straightforward. Different issues, such as cell penetration, incorporation of growth and differentiating factors, toxicity of solvents used, productivity, functional gradient, etc. are main points of current considerations. The progress in the use of electrospinning for TE applications is highlighted in this article with focus on major problems encountered and on various solutions available until now.  相似文献   

17.
Mechanical properties of aerogel composites for casting purposes   总被引:1,自引:0,他引:1  
Polymeric aerogels are used in this study to bind foundry sand forming thus a new kind of mould and core material called AeroSand. A core and mould material in general shall be able to withstand all handling stresses in a foundry shop, withstand the thermal and mechanical stresses exerted onto them during casting, but should also easy removable from a casting. Therefore mechanical properties are important besides others and this paper therefore concentrates on bending and compression strength of AeroSands. It is shown that the strength levels obtainable with aerogel binders are comparable to conventional binder systems. One essential advantage of AeroSands, namely the easy core removal, is not payed off by a loss in strength. The mechanical properties can be explained using a simple extension of the Griffith criterion taking into account the microstructure of the sand aerogel composite and the fracture path.  相似文献   

18.
This report describes the mechanical, thermal and biological characterisation of a solid free form microfabricated carbon nanotube-polycaprolactone composite, in which both the quantity of nanotubes in the matrix as well as the scaffold design were varied in order to tune the mechanical properties of the material. The creep and stress relaxation behaviour of the composite material was analysed to identify an optimal composition for bone tissue engineering. Moreover, the morphology and viability of osteoblast-like cells (MG63) on composite scaffolds were analysed using scanning electron microscopy and MTT assays. Our data demonstrate that by changing the ratio of CNT to PCL, the elastic modulus of the nanocomposite can be varied between 10 and 75 MPa. In this range, the geometry of the scaffold can be used to finely tune its stiffness. However our PCL-CNT nanocomposites were able to sustain osteoblast proliferation and modulate cell morphology. Thus we show the potential of custom designed CNT nanocomposites for bone tissue engineering.  相似文献   

19.
Calcium sulfate (CS) is one of the oldest bone graft materials still in use. Its main limitations are poor handling characteristics, poor mechanical properties, and a resorption rate that is too fast for some applications. The present study investigated the effect of viscous polymers, such as carboxymethylcellulose (CMC) and hyaluronan (HY), on the handling characteristics, mechanical properties, and degradation behavior of CS. CMC and HY were added to CS at concentrations from 1–10 wt%. Addition of CMC to CS at more than 4 wt% produced a putty-like material and decreased the density of the composite, while also increasing flexural and compressive strength at higher loadings. Incorporation of CMC produced a concentration-dependent increase in water absorption and degradation rate. At an equivalent loading, HY-containing CS composites showed better compressive strength than CS with CMC. Overall, addition of CMC or HY to CS resulted in composite materials with better handling characteristics and improved mechanical properties after set, however the degradation rate of the augmented materials was increased. These properties suggest that the enhanced CS materials may be useful in certain clinical situations, such as filling non-uniform bone defects and situations that require mechanical integrity of the bone graft substitute during implantation.  相似文献   

20.
Modified and grafted polymers may serve as building blocks for creating artificial bioinspired nanostructured surfaces for tissue engineering. Polyethylene (PE) and polystyrene (PS) were modified by Ar plasma and the surface of the plasma activated polymers was grafted with polyethylene glycol (PEG). The changes in the surface wettability (contact angle) of the modified polymers were examined by goniometry. Atomic Force Microscopy (AFM) was used to determine the surface roughness and morphology and electrokinetical analysis (Zeta potential) characterized surface chemistry of the modified polymers. Plasma treatment and subsequent PEG grafting lead to dramatic changes in the polymer surface morphology, roughness and wettability. The plasma treated and PEG grafted polymers were seeded with rat vascular smooth muscle cells (VSMCs) and their adhesion and proliferation were studied. Biological tests, performed in vitro, show increased adhesion and proliferation of cells on modified polymers. Grafting with PEG increases cell proliferation, especially on PS. The cell proliferation was shown to be an increasing function of PEG molecular weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号