首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 348 毫秒
1.
采用新型浆料注射/真空浸渍工艺实现了超高温陶瓷组分与碳纤维的有效复合,并结合低温(1 450℃)热压烧结实现了C_f/ZrB_2–SiC复合材料的制备。研究了不同SiC源(SiC粉体和聚碳硅烷PCS)对复合材料微结构和力学性能的影响,结果表明:基于聚碳硅烷优异的流动性实现了陶瓷组分在纤维束内和束间的有效填充,并经低温热压烧结后C_f/ZrB_2–PCS复合材料的相对密度为91.3%,主要归结于聚碳硅烷裂解后残留的微量无定性碳起到了表面除氧的作用而促进致密化,但该无定性碳弱化了晶界强度而导致力学性能降低。同时C_f/ZrB_2–PCS复合材料表现出非脆性断裂模式且断裂功高达539 J/m~2,较C_f/ZrB_2–SiC_p复合材料提升高达84.6%;该复合材料断裂功的提升主要归结于裂纹偏转、裂纹分叉和纤维桥联等多种增韧机制的协同效应,大幅度改善了ZrB_2基超高温陶瓷材料的损伤容限和可靠性。  相似文献   

2.
以ZrB2和SiC粉体为原料,加入适量的聚碳硅烷(PCS),通过热压烧结制备ZrB2-SiC复合陶瓷材料.结果表明:PCS的加入提高了ZrB2-SiC陶瓷的烧结性能和力学性能,而对于没有球磨过的ZrB2其性能并没有提高.  相似文献   

3.
以ZrB2为基体材料,分别采用添加SiC颗粒(SiCp)、SiC晶须(SiCw)和SiC晶片(SiCpl)作为增韧相,采用热压烧结技术制备了SiC/ZrB2陶瓷基复合材料,分析了不同增韧相的种类和添加量对ZrB2陶瓷强韧化效果的影响,并通过层状结构设计,采用放电等离子体烧结工艺制备出ZrB2基层状复合陶瓷材料,研究了层状结构对ZrB2陶瓷强韧化效果的影响。结果表明:添加SiC颗粒、晶须或晶片,采用热压烧结可以制备出接近完全致密的SiC/ZrB2陶瓷基复合材料;与单独添加SiC颗粒或晶须相比,同时添加SiC颗粒和晶须的增韧效果更加明显,而SiC晶片也可以起到较好的强韧化效果;通过层状结构设计,能够较大幅度地提高ZrB2陶瓷的断裂韧性,显示了很好的增韧效果。  相似文献   

4.
以Si粉为烧结助剂,采用真空热压烧结工艺制备了SiC/B4C陶瓷基复合材料.研究了Si的加入和烧结压力对复合材料力学性能的影响.借助X射线衍射、扫描电镜分析了复合材料的物相组成和微观结构.研究结果表明:Si与B4C粉料中的游离碳反应,随后固溶到B4C晶体结构中.当Si质量百分含量为8%时,经18.50℃、60 MPa真空热压烧结的复合材料主晶相为B4.C、SiC,相对密度达到99.8%,断裂韧性和弯曲强度分别达到5.04 MPa·m1/2和354 MPa.复合材料力学性能的提高主要是由于烧结体的高致密度以及断裂方式的转变.  相似文献   

5.
本文以纸为原料,通过叠层设计、低温碳化和高温渗硅制备了具有层状结构特征的SiC/Si陶瓷复合材料。并采用XRD、SEM和三点弯曲等分析测试手段对其相组成、微观结构和力学性能进行了分析。结果表明:纸碳化后为非晶形的碳;渗硅后试样的相组成为β-SiC相、自由Si相和残C相。叠层纸碳化后的微观结构为含有大量扁长空洞的碳骨架,渗硅后得到的SiC陶瓷复合材料具有明显的层状结构特征。三点弯曲实验表明,SiC/Si陶瓷复合材料的强度高达290MPa,达到了常规反应烧结SiC陶瓷的强度水平;且其断裂方式为非灾难性断裂,分析认为这与材料的层状结构形貌有关。  相似文献   

6.
以SiC纳米纤维(SiCnf)为增强体,通过化学气相沉积在SiC纳米纤维表面沉积裂解碳(PyC)包覆层,并与SiC粉体、Al2O3-Y2O3烧结助剂共混制备陶瓷素坯,采用热压烧结工艺制备质量分数为10%的SiC纳米纤维增强SiC陶瓷基(SiCnf/SiC)复合材料。研究了PyC包覆层沉积时间对SiCnf/SiC陶瓷基复合材料的致密度、断裂面微观形貌和力学性能的影响。结果表明:在1 100 ℃下沉积60 min制备的PyC包覆层厚度为10 nm,且为结晶度较好的层状石墨结构;相比于纤维表面无包覆层的复合材料,复合材料的断裂韧性提高了35%,达到最大值(19.35±1.17) MPa·m1/2,抗弯强度为(375.5±8.5) MPa,致密度为96.68%。复合材料的断裂截面可见部分纳米纤维拔出现象,但SiCnf/SiC陶瓷基复合材料界面结合仍较强,纳米纤维拔出短,表现为脆性断裂。  相似文献   

7.
以ZrB2和SiC粉为原料,采用Si3N4球为球磨介质,通过热压烧结制备了ZrB2-SiC复相陶瓷.并对ZrB2-SiC复相陶瓷进行了相对密度、力学性能检测和微观结构分析.结果表明:随着ZrB2球磨时间和SiC含量的增加,该复相陶瓷相对密度先增加后略有降低,ZrB2最佳球磨时间为8小时,SiC最佳含量为20vol.%.ZrB2+20vol.%SiC复相陶瓷的相对密度达到98.3%,抗弯强度达到631±4MPa,断裂韧性达到5.4±0.2 MPa·m1/2.随着球磨时间的增加,ZrB2+20vol.%SiC复相陶瓷的断裂方式由穿晶断裂向沿晶断裂转变.  相似文献   

8.
采用SiC微粉为骨料,聚碳硅烷为粘结剂,混合后溶于THF中干燥过筛,经模压成型后于1000℃保护气氛下低温烧结制备SiC多孔陶瓷。运用XRD、SEM及孔隙率测定手段对陶瓷样品的物相结构、微观形貌及孔隙率进行研究,考察了不同聚碳硅烷含量对SiC多孔陶瓷抗弯强度、线收缩率及气孔率的影响。结果表明,随着聚碳硅烷含量的增加,SiC多孔陶瓷的线收缩率和失重比均增加,抗弯强度和显气孔率均先增加后下降,抗弯强度在聚碳硅烷含量为13%时达到最大值为58.45MPa,开口气孔率在PCS含量为5%时达到最大值为37.2%。  相似文献   

9.
方晖  郑文伟  陈朝辉 《陶瓷学报》2002,23(3):174-177
以聚碳硅烷为先驱体 ,采用先驱体转化法制备三维编织Cf SiC复合材料。研究发现 ,第一次裂解时采用热压辅助可以明显提高材料的致密度和力学性能。第一次在 160 0℃、10MP的条件下热压裂解 60min ,后续真空浸渍—常压裂解处理五个周期所制得的材料具有较高的力学性能 ,其弯曲强度和断裂韧性分别为 5 64MPa、16MPa·m1 2 。讨论了制备工艺对材料结构和性能的影响  相似文献   

10.
提出了溶胶-凝胶孔道构建-反应熔渗制备新方法,首先通过溶胶凝胶方法在纤维预制体中引入B4C-C多孔体,获得Cf/B4C-C多孔预成型体结构;在此基础上,结合反应熔渗Si-Zr合金,获得Cf/ZrB2-ZrC-SiC超高温陶瓷基复合材料。研究了Cf/B4C-C多孔预成型体结构对RMI过程和材料性能的影响,并揭示了孔隙结构对基体分布和界面损伤及复合材料性能的影响规律。结果表明:通过灵活调控Cf/B4C-C孔隙结构可实现复合材料中ZrB2-ZrC-SiC基体分布改善和(PyC-SiC)2界面损伤缓解,大幅提升材料性能。当预成型体孔隙结构为25.9%和58.0μm时,制备的Cf/ZrB2-ZrC-SiC复合材料基体可均匀分布于纤维束间和束内,同时纤维能得到良好的保护,材料表现出最优的力学性能(抗弯强度231 MPa)。  相似文献   

11.
为了改善ZrB2基超高温陶瓷的热冲击损伤抗性,采用冷等静压–无压烧结法在ZrB2–SiC–Graphite(ZSG)材料体系中引入孔隙制备ZSG多孔陶瓷,同时利用热压法制备了ZSG致密陶瓷作为对比材料,研究了2种ZSG陶瓷材料的力学性能,并探究了孔的引入对ZSG复合陶瓷热冲击性能的影响。结果表明:孔的引入降低了ZSG陶瓷的抗弯强度(由230.04 MPa降为98.12 MPa)和断裂韧性(由4.69 MPa·m1/2降为4.27 MPa·m1/2),但孔的引入大大提升了ZSG陶瓷的临界裂纹尺寸(由132μm增长为602μm)。孔的引入明显提高了材料的残余强度保持率(由54%增长为84%),即改善了ZrB2基陶瓷的热冲击损伤抗性。与其它材料体系不同的是,孔的引入还提高了ZSG复合陶瓷的临界温差,说明孔对ZSG复合陶瓷的热冲击断裂抗性和损伤抗性具有同时增强的效果。  相似文献   

12.
先驱体转化-热压单向Cf/SiC复合材料的高温弯曲力学行为   总被引:3,自引:0,他引:3  
研究了采用先驱体转化-热压烧结制备的单向C1/SiC复合材料室温,1573,1723,1923K温度下力学行为,并从显微结构的特征分析了单向Cf/SiC复合材料高温力学行为的变化原因,结果表明:C1/SiC复合的室温,1573,1723,1923K温度下弯曲强度分别为550,392,394,574MPa,弯曲模量分别为157,148,132,83GPa,Cf/SiC复合材料破坏时,其破坏方式将从室温和573K的分层断裂向1723K,1923K的脆性断裂转化,Cf/SiC显微结构的分析表明,在纤维周围和大晶粒间存在着大量的有一定结晶程度的玻璃相,它在高温时的软化对Cf/SiC复合材料的高温强度和弯曲模量变化规律起到重要的支配作用。  相似文献   

13.
采用两步包埋法在Cf/SiC复合材料表面制备了Zr B_2-SiC/SiC超高温陶瓷涂层。借助SEM、XRD对涂层的微观结构及物相组成进行了分析研究,并进行了高温静态氧化和热震测试。研究表明,1500°C氧化5 h后,涂层表面覆盖有平整的玻璃相氧化层,氧化失重率为6.4%;热震测试10次后涂层的氧化失重率为14%。Zr B_2-SiC/SiC涂层能有效提高Cf/SiC复合材料的高温抗氧化性能。  相似文献   

14.
SiC基层状复合材料界面层的选择   总被引:5,自引:1,他引:4  
利用凝胶注模成型SiC基体层 ,以喷涂法、流延法、金属箔法、浸涂法分别加涂W ,W -2 % (质量分数 ,下同 )Co ,Ta,BN界面层 ,通过热压烧结制备了SiC/W ,SiC/W -2 %Co ,SiC/Ta ,SiC/BN层状复合材料 .在复合材料高温制备过程中 ,金属W ,W -2 %Co ,Ta与SiC反应生成了碳化物和硅化物 ,失去了金属塑性 ,未能实现裂纹尾流区桥接、残余应力增韧等金属界面层层状复合材料赖以大幅度提高其强韧性的增韧机制 ,其增韧效果仅与BN陶瓷界面层的增韧效果相当 .此外 ,研究表明 ,提高基体层力学性能可以显著提高层状复合材料的强韧性 .制备的SiC/BN层状复合材料的室温三点弯曲强度为 72 9.86± 114 .0 2MPa、室温断裂韧性为 2 0 .5 8± 2 .77MPa·m1 /2 ,其主要增韧机制包括裂纹分叉钝化、裂纹偏转、裂纹并行扩展以及裂纹尾流区片层拔出等  相似文献   

15.
二硼化锆基超高温陶瓷的制备及性能   总被引:1,自引:0,他引:1  
王海龙  汪长安  张锐  黄勇  方岱宁 《硅酸盐学报》2007,35(12):1590-1594
用碳化硅(SiC)颗粒增韧二硼化锆(ZrB2)陶瓷,在氩气流中热压烧结温度为1 950℃、保温1 h,20 MPa压力下成功制备出了致密的ZrB2/SiCp复合材料.ZrB2/SiCp复合材料的致密度随着SiC颗粒添加量的增加而增加.当SiC颗粒的体积分数(下同)为15%时,相对致密度达到100%.ZrB2/SiCp复合材料的抗弯强度和断裂韧性都随着SiC添加量的增加成上升趋势,当SiC颗粒的添加量在15%时同时达得最大值,分别为646 MPa和8.52 MPam·m1/2.SiCp的添加还提高了ZrB2/SiCp复合材料的耐氧化烧蚀性能.  相似文献   

16.
Cf/SiC复合材料克服了单一SiC材料韧性低、烧结过程中晶粒长大造成强度下降等缺点 ,本文就Cf/SiC复合材料的生产工艺进行了综述  相似文献   

17.
采用机械合金化和热压烧结的方法制备了3种不同成分配比的Si-B-C-N-Zr陶瓷,对比分析了3种陶瓷的物相组成、显微形貌和力学性能.结果表明,3种陶瓷的主要物相都为ZrB2、BN(C)、ZrN、SiC、m-ZrO2和ZrOx相,且ZrB2和ZrN含量会随着Zr和B含量增加而增多;热压烧结后3种陶瓷表面都存在一定数量的气...  相似文献   

18.
以聚合有机锆烷、聚合有机硼氮锆烷与聚碳硅烷组成的共溶前驱体为原料,采用化学气相渗透和聚合物浸渍裂解工艺制备了C/C-ZrB2-ZrC-SiC超高温陶瓷基复合材料,对其物相组成、微观结构、力学性能和抗烧蚀性能进行了研究. 结果表明,所制材料基体由ZrB2和ZrC纳米颗粒均匀弥散分布于连续的SiC相中构成. 随热解炭含量增加,材料的弯曲强度和断裂韧性皆呈先上升再下降的趋势,其含量为22.3%(j)的材料的力学性能最优,弯曲强度和断裂韧性分别为127.9 MPa和6.23 MPa×m1/2,且具有假塑性断裂特性. 材料在1800~2200℃等离子弧中1000 s的线烧蚀率小于1.67 mm/s,质量烧蚀率小于1.66 mg/s.  相似文献   

19.
基于预防材料老化的理念,采用机械合金化和热压烧结的方法制备了钻杆用陶瓷,研究了烧结温度对陶瓷显微形貌和力学性能的影响.结果表明,当烧结温度为1800℃、1900℃和2000℃时,陶瓷的物相主要由ZrB2、ZrN、SiC、BN(C)、m-ZrO2和ZrOx组成,不同烧结温度下垂直于热压和平行于热压方向的陶瓷中都可见尺寸不...  相似文献   

20.
杉木经NaOH预处理后,浸渍聚碳硅烷有机溶剂浆料,在1000℃、N_2气氛下低温烧结,制成一种具有杉木显微结构的多孔SiC陶瓷。研究了浆料中PCS含量对烧成SiC多孔陶瓷的微观形貌、线收缩率、体积密度及元素含量变化等性能的影响。结果表明:SiC多孔陶瓷保留了原木材的纤维束和管状孔结构,并且随着PCS含量的增加,SiC多孔陶瓷壁厚也随之增大。烧成SiC多孔陶瓷线收缩率随PCS含量的增加而增加;体积密度随PCS含量的增加而增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号