首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 522 毫秒
1.
酸化老化文献纸张的脱酸和加固是近年来各图书馆、博物馆和档案馆等文献保护领域普遍关心的问题。采用棉花纳米纤维素晶须(CNC-C)和棉花纤维素纳米纤丝(CNF-C)两种纳米纤维素及其复配物对三种模拟老化文献纸张进行加固,测定加固前后的抗张强度、耐折度和撕裂度。结果表明:纤维素纳米纤丝(CNF-C)和纳米纤维素晶须(CNC-C)对老化纸张都有非常明显的加固效果;两种纳米纤维素复配加固效果优于单独使用,抗张强度最高增强103%,耐折次数最高提升9.8倍,撕裂度最高提升81%,加固效果明显好于常用的羧甲基纤维素。  相似文献   

2.
为了降低加固劣化纸张所用纳米纤维素悬浮液的浓度,研究了添加不同种类和浓度的醇对加固效果的影响。研究结果表明:采用含有醇的纳米纤维素悬浮液处理宣纸,可以在较低纳米纤维素悬浮液浓度下显著提升宣纸的机械强度,并保持宣纸外观和结构基本不变。在优选的含5%乙醇的0.3%纳米纤维素悬浮液处理后,宣纸的抗张强度提升近1倍,耐折次数提高3倍。对劣化宣纸强度的提升更为明显,抗张强度提升超过1倍,耐折次数提升11倍。这种含醇的低浓度纳米纤维素悬浮液有望成为廉价方便的劣化纸张加固剂。  相似文献   

3.
以漂白桉木浆和废报纸为原料,利用2,2,6,6-四甲基哌啶-1-氧自由基(TEMPO)/NaBr/NaClO氧化体系对其进行处理制备氧化纳米纤维素,并探究两种氧化纳米纤维素添加量对纸张性能的影响。研究结果表明:桉木浆氧化纳米纤维素的平均纤维长度约为75~95 nm,长径比约为6.5~8.5,均高于废报纸氧化纳米纤维素(45~75 nm,4~6)。添加桉木浆氧化纳米纤维素和废报纸氧化纳米纤维素均可使纸张抗张指数、耐破指数和撕裂指数增加。添加6%桉木浆氧化纳米纤维素时,纸张抗张指数由21.16(N·m)/g增加至31.37(N·m)/g,耐破指数由1.32(kPa·m^(2))/g增加至1.84(kPa·m^(2))/g,撕裂指数由6.61(mN·m^(2))/g增加至8.03(mN·m^(2))/g;添加6%废报纸氧化纳米纤维素时,纸张抗张指数由21.16(N·m)/g增加至27.22(N·m)/g,耐破指数由1.32(kPa·m^(2))/g增加至1.79(kPa·m^(2))/g,添加4%废报纸氧化纳米纤维素,纸张撕裂指数由6.61(mN·m^(2))/g增加至8.12(mN·m^(2))/g,可见,添加桉木浆氧化纳米纤维素效果更佳。添加1%阳离子淀粉,有助于两种氧化纳米纤维素对纸张强度的提高,其中桉木浆氧化纳米纤维素可使抗张指数最大提高51.09%,耐破指数提高50.00%,撕裂指数提高27.62%。  相似文献   

4.
董剑 《粘接》2023,(2):121-124+128
纸质文化档案对我国文化发展有重要意义,如何保护纸质档案已经成为当前研究的热点话题。以纳米纤维素为稳定剂和加固剂,分别引入不同浓度的醇,分析加固效果。实验结果表明,纳米纤维素在加入醇之后能够得到较好的悬浮液,采用悬浮液处理老旧纸质档案,能够在保证纸张档案自身结构和记录内部不出现损害的情况下很好地提高纸张档案的内部机械程度。进一步探究纳米纤维素和乙醇的最佳适配浓度,可以发现当纤维素为0.3%,乙醇为5%时悬浮液的处理效果最好,处理后老旧纸质档案的抗张强度相比较于处理之前提升了1倍,耐折力更好,可以达到3倍以上。  相似文献   

5.
采用无皂聚合工艺合成了交联型阳离子聚乙烯醇接枝丙烯酸酯共聚物乳液,作为纸张增强剂可显著提高纸张的抗张指数、撕裂度、耐破度等。对阳离子基单体和交联性单体的比例、合成工艺条件等对纸张增强效果的影响进行了探讨。当m(环氧丙基三甲基氯化铵):m(甲基丙烯酰氧乙基三甲基氯化铵):m(甲基丙烯酸缩水甘油酯)=1:6:1,w(乳液)=0.8%时,纸张的抗张强度,撕裂度,耐破度等性能指数均有35%以上的提高。  相似文献   

6.
张素凌  叶代勇 《精细化工》2014,31(9):1120-1125
为了研究快速地制备改性纳米纤维素的方法,将低相对分子质量(简称分子量,下同)聚丙烯酸(PAA)以紫外光引发聚合的方法接枝到纳米纤维素晶须上,制备出聚电解质刷型纳米纤维素晶须。采用红外光谱、固体核磁、透射电镜、X射线衍射、热重分析等对刷型纳米纤维素晶须进行了表征测试。考察了单体浓度、光引发剂用量、紫外光照射时间等对接枝聚合反应的影响。结果表明,PAA与纳米纤维素晶须的质量比大于1∶1,光引发剂用量为纳米纤维素晶须质量的0.8%~1.0%,反应时间为90 s时,所得接枝产物中羧基含量最高,达到0.012 75 mol/g。紫外光接枝减少了制备改性纳米纤维素的步骤和时间,将扩展纳米纤维素的表面改性方法和用途。  相似文献   

7.
竹纳米纤维素晶须的制备   总被引:2,自引:0,他引:2  
利用硫酸水解竹浆纤维制备纳米纤维素晶须。通过原子力显微镜(AFM)和X射线衍射对纳米纤维素晶须的形貌、结构进行分析和表征,研究不同酸水解时间对纳米纤维素晶须结构的影响。结果表明,用竹浆制备的纳米纤维素晶须为长棒状结构。随着酸水解时间的延长,其长度和直径逐渐减小;在酸水解时间为20 min时无定形区逐渐被降解,其长径比最大,结晶度最高。  相似文献   

8.
以丙烯酸单体为溶剂,利用聚己内酯二元醇(PCL1000)、异佛尔酮二异氰酸酯(IPDI)、2,2-二羟甲基丁酸(DMBA)、三羟甲基丙烷(TMP)合成水性聚氨酯丙烯酸酯(WPUA),WPUA中引入十三氟辛醇(FOH),制备无VOC溶剂自交联含氟聚氨酯丙烯酸酯(WFPUA)复合乳液。加入后扩链剂乙二胺基乙磺酸钠(AAS)可提高预聚体自乳化能力,降低乳胶粒粒径,提升WFPUA稳定性。研究了表面施胶后纸张的表面形态、防水防油、耐破度、撕裂度及抗张强度等性能。结果表明:聚合物在施胶后纸张表面纤维上成膜,纸张表面空隙减少;纸张与水和二碘甲烷接触角达到136.1°和105.3°;施胶后纸张耐破度达到266 k Pa,撕裂度达到732 m N,干湿抗张强度指数达到5.1 N·m/g和53 N·m/g,可以很好地运用到特种纸的制备中。  相似文献   

9.
硫酸铜助催化制备纳米纤维素晶须   总被引:9,自引:1,他引:8  
以w(H2SO4)=64%的硫酸为催化剂,加入m(CuSO4)/m(纤维素)=0~3%的硫酸铜作助催化剂,水解脱脂棉,考察了制备纳米纤维素晶须(NCW)反应中反应温度、反应时间及硫酸铜加入量对纳米纤维素晶须产率、颗粒横截面直径、颗粒长度、颗粒长度与横截面直径之比和扫描电镜形貌的影响。结果表明,反应温度50℃、反应时间120min、催化剂投入量以m(CuSO4)∶m(纤维素)=1∶100为最佳工艺条件,纳米纤维素晶须对于脱脂棉的产率达58%左右,粒子的长径比为20~50,在原子力显微镜下观测到产品所成膜最高峰为27.95nm。加入了硫酸铜之后,缩短了反应时间,提高了反应效率和产率,减小了产物的颗粒直径,改善了纳米纤维素晶须的形状,因此,硫酸铜可以作为助催化剂有效地改善制备出的纳米纤维素晶须的形貌和尺寸分布。  相似文献   

10.
介绍了5种纤维素材料:微晶纤维素(MCC)、纤维素纳米晶(CNC)、纤维素纳米纤维(CNF)、纤维素纳米晶须(CNW)以及细菌纤维素(BC)补强天然橡胶的应用研究,总结了纤维素材料对天然橡胶性能的影响,并对其应用前景进行了展望。  相似文献   

11.
纤维素纳米纤丝/环氧树脂复合薄膜的透光性研究   总被引:1,自引:0,他引:1  
对杨木木粉进行酸碱处理后得到纯纤维素溶液,之后通过超声和研磨均质两种方法对纤维素进行机械开纤处理,得到两种不同尺寸的纤维素纤丝溶液。通过场发射扫描电镜观察,超声后的纤维素纤丝的直径分布在200~250nm,研磨均质后的纤维素纤丝直径主要分布在20~100 nm。由于纤维素纤维直径的细化,研磨均质后的纯纤维素薄膜的透光率高于超声后的,并且比普通打印纸提高近四倍。浸渍环氧树脂的复合薄膜也随着纤维素纳米纤丝直径减小,透光率提高,研磨均质后的复合薄膜透光率相比纯环氧树脂,仅损失3%。这表明研磨均质的纤维素纳米纤丝增强环氧树脂薄膜可以作为高透明性材料使用。  相似文献   

12.
以纳米纤维素晶须悬浮液为原料制备纳米硝化棉   总被引:1,自引:0,他引:1  
将精制棉在冰浴中超声波处理15min,以H2SO4(质量分数64%)为催化剂,液固比为17.5mL/g,在45℃下恒温搅拌1 h,制备出平均直径在15~30nm,平均长度在150~250nm的纳米纤维素晶须.以纳米纤维素晶须悬浮液为原料,硝酸(质量分数为92.5%)为硝化液制备出硝化纤维素.结果发现,由于纳米纤维素具有...  相似文献   

13.
为探究低温NaOH/尿素溶剂体系制备的纤维素溶液加固纸张的性能,以宣纸和旧书纸为样品,以乙醇为纸张预处理液,研究了预处理液浓度、纤维素溶液接触时间、纸张干燥方式等对加固性能的影响,并表征了纸张加固前后的机械性能、表观形貌和微观结构。研究结果表明:采用乙醇作为纸张预处理液,克服了纤维素溶液强碱性对纸张的腐蚀,使后续加固操作成为可能;加固处理显著提升了纸张的机械性能和抗老化性能,中和了纸张的酸性,同时纸张表观形貌和微观结构没有明显变化。  相似文献   

14.
以麦草备料废渣为原料,经对甲基苯磺酸水解和盘磨机械处理得到纤维素纳米纤丝,并采用化学组分分析、扫描电子显微镜、原子力显微镜、X-射线衍射仪和热重分析仪研究探讨灰分和木质素含量对纳米纤维素形态、尺寸、结晶度和热稳定性的影响。结果表明,经过水洗涤和酸水解处理后麦草备料废渣的木质素含量从18.56%减少到10.05%;同时,麦草备料废渣原料结晶度从50.5%升高到59.1%。原子力显微镜观察表明,灰分和木质素含量越低,得到的麦草备料废渣纤维素纳米纤丝分散性越好,尺寸分布越均匀,微纤丝平均直径在60 nm左右。热重分析表明,得到的纤维素纳米纤丝在500℃后仍有高达36.3%的残余率,说明该方法用于制备麦草备料废渣可以成功制得纳米纤维素,且反应条件温和,对结晶度损害小。  相似文献   

15.
研究对比了半水、无水两种石膏晶须在瓦楞纸中的加填应用效果,发现相比半水石膏晶须,无水石膏晶须在水中溶解度明显更低,因而用于纸张加填时保留率更好。加填量为5%时,无水石膏晶须可以明显改善纸张强度性能,但进一步增加填料用量,纸张强度下降;半水石膏晶须用于纸张加填时,随着加填量增加,纸张强度性能呈逐渐下降趋势;同等填料用量下,无水石膏晶须加填纸张的强度性能更好。阳离子淀粉应用可以改善加填石膏晶须纸张的强度性能,而且相比对半水石膏晶须加填纸张的增强效果更好。相关研究为磷石膏晶须更好地用于纸张加填提供了数据和理论支持。  相似文献   

16.
丙烯酸单体接枝纳米纤维素晶须的研究   总被引:4,自引:0,他引:4  
以K2S2O8为引发剂,在纳米纤维素晶须(NCW)上接枝丙烯酸单体(AA),制备出丙烯酸接枝改性的纳米纤维素晶须.通过傅立叶变换红外光谱(FTIR)、透射电镜(TEM)、热重分析(TGA)等测试方法对接枝产物的性能进行了分析,并采用电导滴定的方法计算了接枝率以及表面取代基团含量.研究了反应条件对接枝率和接枝效率的影响.结果表明,在引发剂浓度为4 mmol/L,引发时间为5 min,纳米纤维素晶须与丙烯酸单体摩尔比为1: 1.5,反应时间为6 h的条件下,得到了接枝率为14.09%的丙烯酸接枝纳米纤维素晶须.实验证明,在NCW上可以接枝上丙烯酸,接枝率为14.09%的产物与NCW具有相似的表面形貌和热性能;TEM分析可知,接枝产物的分散性得到了提高;表面取代基团含量测试表明,接枝产物表面上的亲水性分散基团含量比NCW增加了5倍以上.  相似文献   

17.
研究了空心微珠、纳米碳酸钙、碱式硫酸镁晶须和硫酸钡四种无机填料对PP的模塑收缩率的影响,通过与POE复配来改善PP的模塑收缩率,并考察了PP复合材料的力学性能。结果表明,无机填料与POE复配使用,可以明显降低PP的模塑收缩率,纳米碳酸钙、碱式硫酸镁晶须和POE复配效果最佳,模塑收缩率小于0.6%。  相似文献   

18.
研究陶瓷晶须TISMO在氟橡胶(FKM)、丙烯酸酯橡胶(ACM)和硅橡胶(MVQ)制品胶料中的应用,并与常用填料进行对比,分析其对胶料性能的影响。结果表明:针状陶瓷晶须TISMO在橡胶中分散性能良好;加快FKM胶料的硫化速度,增大交联密度,提高拉伸强度和撕裂强度;提高ACM胶料的耐热老化性能;大幅提高MVQ胶料的撕裂强度和耐热老化性能。  相似文献   

19.
以K2S2O8为引发剂,在纳米纤维素晶须(NCW)上接枝丙烯酸单体(AA),制备出丙烯酸接枝改性的纳米纤维素晶须。通过傅立叶变换红外光谱(FTIR)、透射电镜(TEM)、热重分析(TGA)等测试方法对接枝产物的性能进行了分析,并采用电导滴定的方法计算了接枝率以及表面取代基团含量。研究了反应条件对接枝率和接枝效率的影响。结果表明,在引发剂浓度为4mmol/L,引发时间为5min,纳米纤维素晶须与丙烯酸单体摩尔比为1∶1.5,反应时间为6h的条件下,得到了接枝率为14.09%的丙烯酸接枝纳米纤维素晶须。实验证明,在NCW上可以接枝上丙烯酸,接枝率为14.09%的产物与NCW具有相似的表面形貌和热性能;TEM分析可知,接枝产物的分散性得到了提高;表面取代基团含量测试表明,接枝产物表面上的亲水性分散基团含量比NCW增加了5倍以上。  相似文献   

20.
为改善聚甲基丙烯酸甲酯(PMMA)的热性能和力学性能,以经过预处理的棉花纤维素为增强体,将PMMA与棉花纤维素溶液按不同比例混合,利用溶液浇铸法制备PMMA/棉花纤维素复合薄膜,并利用热重分析、透光性分析以及拉伸性能测试研究了不同棉花纤维素含量的PMMA/棉花纤维素复合薄膜的性能。结果表明,与PMMA薄膜相比,PMMA/纤维素复合薄膜的热稳定性和力学性能均有所提升,PMMA/纤维素复合薄膜的热分解温度提高8.3%;随着棉花纤维素含量从0增加到15%,拉伸强度从10.53 MPa提升到55.95 MPa,最高提升了431%。此外,复合薄膜的光透过率随着棉花纤维素含量的增加而降低。当棉花纤维素含量为7.5%时,复合薄膜不仅具有良好的力学性能,而且具有较高的透光率,综合性能较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号