首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用定向凝固法制备藕状多孔镁,采用GLEEBLE~(-1)500型材料模拟实验机和分离式霍普金森压杆(SHPB)装置,在以1×10~(-3)~1650 s~(-1)的应变速率范围内沿垂直于气孔方向进行压缩实验,研究应变速率对藕状多孔镁压缩变形行为和力学性能的影响。结果表明:当垂直于气孔方向压缩时,藕状多孔镁的应力-应变曲线分为应力线性增加的弹性阶段、应力缓慢增加的平台阶段和应力急剧增加的密实化阶段,应力随应变的增加持续增大,无应力峰值的出现。而当垂直于气孔方向压缩时,应变速率对藕状多孔镁的变形行为影响显著,在应变速率ε60 s~(-1)条件下,主要变形方式为气孔先发生椭圆化变形,然后部分气孔的孔壁率先向气孔内发生弯月形塌陷并形成垂直于压缩方向的先变形带,随后变形带不断产生,从而逐步实现密实化;而较高应变速率(ε=450~1650 s~(-1))下的变形方式虽然气孔也是先后发生椭圆化、孔壁向气孔内的弯曲塌陷等变形并形成先变形带,但先变形带沿试样对角线方向率先形成,并随压缩进行不断向与对角线垂直的方向扩展。应变速率对藕状多孔镁的力学性能有较明显的影响,其影响机制主要是由于不同应变速率时气孔的变形方式发生了变化。  相似文献   

2.
采用定向凝固法制备藕状多孔镁,采用GLEEBLE-1500材料模拟实验机和直撞式霍普金森压杆(SHPB)实验设备,在10~(-3)~1650 s~(-1)的应变速率范围内,沿平行于气孔方向进行压缩变形实验,研究应变速率对藕状多孔镁压缩变形行为和力学性能的影响及影响机理。结果表明:藕状多孔镁沿平行于气孔方向的压缩变形过程主要包含线弹性变形阶段、局部坍塌变形阶段、低应力平台变形阶段和密实化阶段4个阶段,其中平台变形阶段较宽(应变在0.2~0.7之间)。平行于气孔方向压缩时,应变速率对藕状多孔镁的变形行为影响显著,在应变速率e60 s~(-1)条件下变形时,主要以孔壁首先发生局部剪切断裂,然后孔壁向孔隙内塌陷的方式变形,而在较高应变速率e=450~1650 s~(-1)条件下变形时,主要以孔壁首先发生整体偏转,然后产生弯曲折断的方式变形;应变速率对藕状多孔镁的坍塌应力和平台应力有较明显的影响,其影响机制主要是由于不同应变速率时孔壁的变形方式发生变化,而受冲击波效应的影响不明显。  相似文献   

3.
藕状多孔铜轴向压缩变形行为与本构关系   总被引:1,自引:1,他引:0  
在氢气压力为0.2 MPa、熔体温度为1 200℃条件下采用定向凝固法制备d45 mm×120 mm的藕状多孔纯铜棒材,研究藕状多孔金属的压缩变形过程及其影响因素,分析藕状多孔材料的压缩变形机理,采用线性回归分析方法建立藕状多孔材料的压缩变形本构关系.结果表明:藕状多孔铜的压缩变形过程分为弹性变形、以孔壁塑性屈曲为主的大塑性变形和密实化3个阶段;大塑性变形阶段的主要变形机理是孔壁先呈波形弯曲,然后产生塌陷和折叠变形;藕状多孔铜沿平行气孔方向静态压缩时应力-应变曲线受应变速率影响很小.  相似文献   

4.
采用定向凝固法,在氢气压力为0.2 MPa,熔体温度为1 200 ℃的条件下制备d 45 mm×120 mm的藕状多孔纯铜棒材,研究藕状多孔金属垂直于气孔方向的压缩变形过程及其影响因素,分析压缩变形机理.结果表明:藕状多孔铜沿垂直于气孔方向的压缩变形过程可分为弹性变形、气孔的塑性屈曲、气孔的密实化和密实化后的塑性变形4个阶段,其中塑性屈曲阶段的主要变形机理为多孔材料在垂直载荷的作用下先后形成若干个变形带,在变形带内圆形气孔先后以压扁和塌陷的方式进行塑性变形;采用回归分析方法建立藕状多孔金属沿垂直于气孔方向的压缩变形本构关系.  相似文献   

5.
利用自行开发的GASAR装置,成功制备出藕状多孔纯Cu及多孔Cu-1.8%Cr合金试样,并对其孔隙率、平均气孔直径、基体组织及压缩特性进行了相应的对比研究。结果表明:随着凝固高度的增加,气孔率保持不变,而平均气孔直径增大,且多孔Cu-1.8%Cr合金的气孔率和平均气孔直径高于多孔纯Cu;藕状多孔纯Cu的定向凝固组织是由粗大的Cu晶粒组成,而多孔Cu-1.8%Cr合金的定向凝固组织为白色细小的α固溶体、灰色的共晶相(α+β)以及少量颗粒状的单相Cr质点组成;藕状多孔纯Cu及多孔Cu-1.8%Cr合金的压缩应力-应变曲线均由弹性变形阶段、屈服平台阶段及密实化阶段组成,但是Cr的加入使得藕状多孔纯Cu的压缩性能得到较大提高——杨氏模量和屈服强度增加而加工硬化指数降低。  相似文献   

6.
利用Hopkinson压杆进行动态冲击压缩试验,测试了不同应变速率下Mg-8%Li合金的动态应力-应变曲线;分析了Mg-8%Li合金动态应力-应变行为的应变速率效应及其变形局部化现象与形成条件.结果表明,Mg-8%Li合金的动态应力-应变曲线随应变速率提高而先升高后降低,即Mg-8%Li合金的应力-应变行为由正应变速率效应向负应变速率效应转化,其应变速率效应转折点与显微组织中出现的变形局部化现象有密切关系,而且该合金在应变速率提高(3700/s→4600/s)后,产生变形局部化需要的应变下降(0.28→0.185),表明Mg-8%Li合金要形成变形带,必须使材料在一定的应变速率下获得相应的应变.  相似文献   

7.
为了改善6061+Er铝合金的热加工性,通过扫描电镜、透射电镜和Gleeble-3800热模拟试验机,研究了6061+Er铝合金的微观组织,以及当变形温度为375~500℃、应变速率为0.001~10 s^(-1)时的热变形行为。结果表明,锻态6061+Er铝合金中存在微米级初生Al_(3)Er相和起弥散强化效果的纳米级次生AlEr相。建立了6061+Er铝合金热压缩变形过程中的流变应力本构方程,当应变速率为0.001~10 s^(-1)、变形温度为375~500℃时,流变应力计算值与峰值真应力实测值的误差<10%,验证了流变应力本构方程的准确性和可靠性。6061+Er铝合金适宜的热加工范围为:变形温度为375~400℃、应变速率为0.001~0.01 s^(-1)。  相似文献   

8.
采用金属-气体共晶定向凝固法(常称为Gasar工艺)成功制备藕状多孔Mg-Mn、Mg-Mn-Zn系合金,并研究合金元素及孔结构对藕状多孔镁合金力学性能及腐蚀性能的影响。研究结果表明:1wt.%Mn的添加,可以使藕状多孔纯镁的压缩强度从64MPa (孔隙率~36%)提升至74MPa (孔隙率~37%),而进一步添加1wt.%的Zn元素,材料的压缩强度增至115MPa (孔隙率~37%)。Zn 元素的加入可以提高藕状多孔 Mg-Mn合金的耐腐蚀性能,同时,藕状多孔Mg-1wt.%Mn-1wt.%Zn合金定向孔下方的圆锥状溶质富集区表现出良好的耐腐蚀性。孔径对藕状多孔材料腐蚀性能有一定的影响,当孔径尺寸为1026μm时,Gasar Mg-1wt.%Mn合金孔壁腐蚀较为严重,而当孔径降至306μm时,孔会被腐蚀产物封闭,孔壁的腐蚀程度较小。  相似文献   

9.
宁静  王敖  苏杰  程兴旺 《锻压技术》2022,(12):234-239
采用Gleeble-3800热模拟试验机研究了含有W、Mo等多种碳化物形成元素的新型中合金超高强度钢的热变形行为,变形温度为800~1200℃,应变速率为0.01~10 s^(-1),最大应变量为0.7。热模拟试验得到了试验钢的高温流变应力曲线,其变形抗力随变形温度的降低和应变速率的提高而增加。在变形温度1000℃以上进行热压缩时,试验钢可发生动态再结晶;变形温度的升高会促进晶粒粗化及二次再结晶的发生,而应变速率的提升有利于促进再结晶晶粒的细化和均匀化。根据试验钢的高温流变应力曲线,计算出试验钢的热加工本构方程,并建立了真应变为0.4的热加工图。结合微观组织演变的分析结果,得出试验钢的最佳热加工区域应为:变形温度为1000~1100℃、应变速率为1~10 s^(-1)。  相似文献   

10.
在Gleeble-1500D热力模拟试验机上,以0.001~1 s^(-1)的应变速率和900~1250℃的温度对铸态ER8钢进行了单轴热压缩试验,得到了流动应力曲线,并基于此,建立了热加工图,详细地分析了温度和应变率对材料热加工性能的影响。结果表明:在变形温度为900~1250℃、应变速率为0.001~1 s^(-1)范围内,铸态ER8钢的流动应力曲线为动态再结晶型曲线,仅当变形温度低于900℃、应变速率高于1 s^(-1)时,流动应力曲线具有明显的动态回复型曲线的特征。结合ER8钢的热加工图分析可知,为了防止高温塑性变形失稳,在锻造时变形温度应大于950℃;当应变为0.20时,应变速率建议小于0.05 s^(-1)。  相似文献   

11.
姜海昌  杜华  谢惠民  戎利建 《金属学报》2006,42(11):1153-1157
利用扫描云纹技术研究了多孔NiTi形状记忆合金在压缩状态下的微观形变特征.通过压缩变形过程中云纹密度和方向的改变分析了多孔合金孔壁边缘和心部应变场的变化.结果表明:多孔NiTi形状记忆合金的失效是由孔隙边缘的应力集中所引起的.在外加压缩载荷的作用下,多孔NiTi合金的孔壁边缘和心部除承受压缩应力外,还承受较大的剪切应力作用.在孔隙的尖角区形成了应力集中,并逐步产生裂纹.裂纹沿着与加载方向成45°角的方向向孔壁中心扩展,最终产生断裂.多孔合金断裂后在孔壁边缘区域产生很大的应变,而孔壁心部的应变较小,几乎没有发生塑性变形.最后结合云纹干涉的结果分析了多孔NiTi形状记忆合金的压缩行为特征.  相似文献   

12.
利用Gleeble−3500热模拟机的热压缩实验,研究了铸态GH2132合金在变形温度为1173~1423 K和应变速率为0.001~10 s^(−1)条件下的热压缩变形行为和微观组织演化规律,分析该合金在不同变形条件下的热变形激活能Q值、应变速率敏感指数m值、温度敏感指数s值的变化规律,基于动态材料模型(DMM)建立热加工图,结合微观组织确定出最佳热加工参数。结果表明:随着变形温度的升高、应变速率的降低,流变应力减小,GH2132合金为应变速率和温度敏感型材料。提高变形温度、降低应变速率有利于获得均匀分布的等轴晶粒。结合热加工图和高温变形微观组织确定,铸态GH2132合金合理的热变形参数所对应的变形温度和应变速率区间分别为1295~1418 K和3.07~10 s^(−1)。  相似文献   

13.
采用放电等离子烧结(简称SPS)技术制备出Cu-10Cr复合材料,利用Gleeble-1500D热模拟试验机,对制备所得复合材料进行高温等温热压缩试验,变形温度为850℃和900℃、应变速率为0.001~1 s^(-1)、真应变量为0.55。结果表明:Cu-10Cr复合材料的流变应力随温度的升高和变形速率的降低而减小,具有典型的动态再结晶特征;利用流变应力、应变速率和变形温度的相关性,计算得出了该复合材料高温变形时应力指数n、应力参数α和结构因子A等参数,求得其热变形激活能Q并构建了流变应力本构方程。  相似文献   

14.
藕状多孔纯铜棒的制备与表征   总被引:3,自引:1,他引:3  
采用定向凝固法,在氢气压力为0.2 MPa、熔炼温度为1 200℃的条件下制备了规则圆柱形气孔沿轴向定向分布的藕状多孔纯铜棒材料,棒材直径为45 mm,长度约为125 mm.测定了所制备材料的密度、孔隙率和通孔率,对所制备多孔材料的气孔形貌和气孔大小分布进行了分析和表征,并对所制备的样品沿平行于气孔方向和垂直于气孔方向的压缩性能进行了测试.结果表明,所制备纯铜棒的平均密度为4.48 g/cm3,平均孔隙率为50%;气孔直径分布为0.3~1.3 mm,气孔平均直径为0.81 mm;藕状多孔纯铜的压缩性能存在明显的各向异性.  相似文献   

15.
为了研究锶变质Al-Si-Mg合金的热变形行为,在变形温度(300~420°C)和应变速率(0.01~10 s~(-1))条件下,进行了等温压缩试验。建立了一种可以准确预测流变应力的基于物理机制的流变应力本构模型。研究结果表明,降低应变速率或提高变形温度可使流变应力降低。高的变形激活能与含Si弥散相钉扎位错密切相关。此外,晶粒和基体中含Si弥散相经过热变形后沿垂直于压缩方向伸长,且处于功率耗散峰值区域,伸长晶粒晶界附近出现不完全动态再结晶。流变失稳主要归因于流变局部化、绝热剪切带的形成及共晶Si相的脆性断裂。最佳的热加工窗口为380~420°C和0.03~0.28 s~(-1)。  相似文献   

16.
采用区域熔炼法在氢气氛下制备了藕状多孔铜,其气孔呈圆柱状沿凝固方向分布。研究了凝固速率对气孔率、气孔直径和气孔数密度的影响。结果表明:气孔率随凝固速率的增加而增大;凝固速率的增加能促进气泡形核,使平均气孔直径减小而气孔数密度增大。所制备的藕状多孔铜的气孔率和气孔直径可通过调节凝固速率而得到控制。  相似文献   

17.
采用热压缩试验研究了SiC颗粒增强镁基复合材料在应变速率为0.1~10 s-1、变形温度为803~843 K时的热成形性能,并在实验数据分析的基础上根据真应力-真应变曲线,计算出复合材料的本构方程及变形激活能Q。结果表明,复合材料在高温下的流变应力较低,峰值应力与变形温度、应变速率之间的关系在低应力区符合指数关系。该复合材料的激活能随着应变速率的增大而增大。  相似文献   

18.
利用Gleeble-1500热模拟实验机,对CuNi10Fe1.6Mn合金进行热压缩实验,研究其在高温塑性变形过程中的流变应力行为。试验温度在800~1000℃,应变速率0.01~10s^(-1),总变形量为60%。实验结果表明:CuNi10Fe1.6Mn合金的流变应力随着应变温度的降低而增加,随着应变速率的增加而增加;应力在达到峰值之后不再发生明显变化,出现稳态流变状态。通过数理统计的方法计算得到CuNi10Fe1.6Mn合金的热变形激活能为306.082kJ/mol,并得到其本构方程。  相似文献   

19.
以20CrNi2Mo低碳钢为研究对象,采用DIL805A/T热模拟试验机在变形温度为900~1050℃、应变速率为0.001~1s^(-1)条件下进行等温单道次轴向热压缩试验,建立了20CrNi2Mo钢高温压缩的最大变形抗力本构方程和热加工图,并观察了热变形组织。结果表明:真应变值为0.1~0.5的热加工图中均存在两个功率耗散峰区,且随着应变量的增加峰区I逐渐向变形温度较高的区域移动,峰区II向应变速率增大的区域移动。热加工图中失稳区域随着应变量的增加先逐渐减小后又逐渐增大,在ε=0.4时,失稳区域最小,此应变量下20CrNi2Mo钢较优的热加工工艺区间为:变形温度940~960℃、应变速率0.001 s^(-1)或温度1025~1050℃、应变速率0.01~0.06 s^(-1)。  相似文献   

20.
TiC/AZ91D镁基复合材料高温压缩变形行为   总被引:7,自引:0,他引:7  
利用自发渗透原位合成法制备了不同体积分数的TiC增强AZ91D镁基复合材料,研究了不同压缩应变速率以及不同变形温度下复合材料的热变形行为,计算分析了不同温度下应变速率敏感指数(m)和表观激活能(Q)与TiC含量的关系.结果表明:TiC/AZ91D复合材料压缩流变应力随TiC含量的增加而升高;TiC含量相同时,流变应力随温度升高或初始应变速率减小而降低.m值随变形温度升高而增大;变形温度以及压缩应变速率相同时,m值随TiC含量升高而增大.Q值依赖于温度、应变速率和TiC含量及其分布,不同条件下其高温变形机制有所差异.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号