共查询到20条相似文献,搜索用时 15 毫秒
1.
风速的随机性、波动性很大,所以风速的大小和很多因素有关,风速预测的准确率不高。针对这种现象,提出了一种基于时间序列和小波分解的最小二乘支持向量机的短时间的风速预测方法。通过小波分解对数据进行平稳性处理,将分解后的分量分别作为模型的输入,进行预测。最小二乘支持向量机的预测值和实际风速值基本上保持一致,误差保持在一定的较小范围内。通过与简单的支持向量机的仿真结果做对比,同时也验证了模型的有效性和可行性。 相似文献
2.
风速的随机性、波动性很大,所以风速的大小和很多因素有关,风速预测的准确率不高。针对这种现象,提出了一种基于时间序列和小波分解的最小二乘支持向量机的短时间的风速预测方法。通过小波分解对数据进行平稳性处理,将分解后的分量分别作为模型的输入,进行预测。最小二乘支持向量机的预测值和实际风速值基本上保持一致,误差保持在一定的较小范围内。通过与简单的支持向量机的仿真结果做对比,同时也验证了模型的有效性和可行性。 相似文献
3.
4.
针对传统模型在机组负荷预测中无法充分捕获内部多变量演化模式的问题,提出了一种基于时间序列的趋势和数值信息融合的双重回声状态网络Dual-ESN(dual-echo state network)机组负荷动态预测模型。首先,引入最小二乘法,对相关的多元历史信息按照局部时间跨度进行趋势拟合。进一步,得到有关过程变化的模式序列,并和原本的数值分别被送入两个独立的储备池,以并行的时间维度进行特征学习。其次,将隐层的高维空间状态送入输出层,融合信息,得到所需要的预测结果。最后,基于山西某工厂660 MW机组装置的真实数据集,进行验证。对比已有预测方法,结果表明所提预测模型在多种性能指标上均有提升。 相似文献
5.
基于支持向量回归的时间序列预测 总被引:24,自引:2,他引:24
该文简要介绍了时间序列预测的研究状况以及支持向量回归的基本原理,将支持向量回归用于对Box-Jenkins煤气炉时间序列的预测,并同其他前馈网络——BP神经网络、自适应特征空间扩张神经网络进行比较,仿真结果表明,BP神经网络和自适应特征空间扩张神经网络在预测性能上比较接近,而支持向量回归在预测性能方面明显优于这两种方法,为进行模型辨识与建模研究奠定基础.文章最后分析了支持向量回归优于BP神经网络和自适应特征空间扩张神经网络的机理. 相似文献
6.
7.
8.
基于最小二乘支持向量机和信息融合技术的水电机组振动故障诊断研究 总被引:1,自引:0,他引:1
应用最小二乘支持向量机和信息融合技术对水电机组的振动故障进行诊断。采用对水电机组振动信号的频域特征和时域振幅特征作为特征向量的学习样本,通过训练,使最小二乘支持向量机能够反映特征向量和故障类型的映射关系,在完成局部诊断后再实现决策信息融合,从而达到故障诊断的目的。以水电机组振动故障诊断为例,进行了应用检验。结果表明,与常规方法相比,最小二乘支持向量机和信息融合技术相结合的方法具有快速有效等优点,适合水电机组振动故障的诊断。 相似文献
9.
时间序列分解在短期电价分析与预测中的应用 总被引:1,自引:0,他引:1
为了提高短期电价预测的精度,将电价分解成工作日电价和周末电价两个时间序列,并且,通过移动平均法和离散傅立叶变换,分别将这两个时间序列分成趋势分量、周期分量和随机分量三个组成部分,然后,分别采用移动平均法、外推法和最小二乘支持向量机对这三个组成部分进行预测以求得两个电价时间序列未来的预测值.仿真结果表明,与采用传统BP神... 相似文献
10.
对风电场风速的准确预测,可以有效减轻并网后风电对电网的影响,提高风电市场竞争力。提出将时间序列自回归滑动平均模型(Auto Regressive Moving Average, ARMA) 与最小二乘支持向量机模型(Least Square Support Vector Machine,LS-SVM)相结合的混合模型短期风速预测方法。采用小波变换(Wavelet Transform,WT)方法将历史风速序列分解成具有不同频率特征的序列。根据分解后各分量的特点,对于低频趋势分量选取LS-SVM方法进行预测,而高频波动分量则选取ARMA模型进行预测,采用小波重构得到最终预测结果。仿真实例表明,不同的预测方法整体的预测精度不同,而混合模型预测的均方根误差最低为11.5%,与单一预测方法相比,混合模型提高了预测精度。 相似文献
11.
油田系统中离心泵因长期在恶劣环境下运行,受现场工况、介质腐蚀等因素影响,故障信号多表征出明显的非线性和时变非平稳性,数据量大,运行状态难以实时准确预测,本文提出了一种基于PSO(Particle Swarm Optimization,粒子群算法)优化LS-SVM(Least Squares Support Vector Machines,最小二乘支持向量机)的离心泵状态预测方法。首先利用粒子群算法的全局搜索特性,对最小二乘支持向量机的核参数g和惩罚因子C进行快速自动寻优,其次确定了平均绝对误差、平均相对误差和均方根误差为预测精度评估指标,最后通过实时采集的数据对本文的预测方法进行验证。结果表明:与LS-SVM预测模型相比,PSO优化LS-SVM模型降低了计算的复杂性,具有泛化能力强,预测精度高的优点,平均绝对误差、平均相对误差和均方根误差较LS-SVM模型分别减少了52%、56%和44%。该方法可为预测性维修提供理论依据,在工程实践方面具有良好的应用前景。 相似文献
12.
水电机组的劣化影响着水电站乃至电力系统的安全稳定运行。为了准确解析水电机组运行状态,获取机组的劣化趋势并对其进行准确预测,本文提出了一种基于极限梯度提升算法、变分模态分解算法、双向门控循环单元神经网络和注意力机制的水电机组劣化趋势预测混合模型。该方法首先用极限梯度提升算法建立考虑工作水头、有功功率和导叶开度影响的水电机组健康状态模型;其次,根据健康状态模型,推导出数年后的水电机组劣化趋势;再次,通过变分模态分解算法对水电机组劣化趋势进行分解,得到多个相对平稳的固有模态函数分量,并对每个模态分量建立双向门控循环单元神经网络和注意力机制的组合模型进行预测;最后,将预测模型的结果进行叠加,得到最终的趋势预测结果。实例分析结果表明,所提方法能准确地表达水电机组的劣化趋势,并且能有效地提高机组劣化趋势的预测精度。 相似文献
13.
基于灰色关联度与 LSSVM 组合的月度负荷预测 总被引:2,自引:0,他引:2
由于月度负荷的二重趋势特性,其变化呈现出复杂的非线性组合特征,使预测精度一直不能达到令人满意的结果.针对月负荷的二重趋势特性和最小二乘支持向量机(least squares support vector machine,LSSVM)存在的数据输入维数大、训练时间长等缺点,提出一种基于灰色关联度与LSSVM 组合的月度负荷预测方法.该方法通过计算灰色关联度来选择训练样本,选取 LSSVM 进行样本训练;将与待预测月高度相似的历史月负荷作为 LSSVM 的训练样本输入,剔除了冗余数据,减少了输入维数,提高了预测精度.通过实例验证和结果对比,证明了该方法可显著提高月负荷预测的精度. 相似文献
14.
15.
基于灰色模型和最小二乘支持向量机的电力短期负荷组合预测 总被引:6,自引:5,他引:6
提出一种联合灰色模型(grey model,GM)和最小二乘支持向量机回归(least square support vector regression,LSSVR)算法的电力短期负荷智能组合预测方法。在考虑负荷日周期性的基础上,通过对历史负荷数据的不同取舍,构建出各种不同的历史负荷数据序列,并对每个历史数据序列分别建立能修正b 参数的GM(1,1)灰色模型进行负荷预测;采用最小二乘支持向量机回归算法对不同灰色模型的预测结果进行非线性组合,以获取最终预测值。该方法在充分利用灰色模型所需原始数据少、建模简单、运算方便等优势的基础上,结合最小二乘支持向量机所具有的泛化能力强、非线性拟合性好、小样本等特性,提高了预测精度。仿真结果验证了所提出组合方法的有效性和实用性。 相似文献
16.
基于EEMD,SVM和ARMA组合模型的电价预测 总被引:1,自引:0,他引:1
随着我国电力体制改革的不断深入,售电公司作为电力市场的主要参与者,其主要获利方式是从电力市场中购买电量并销售给用户。因此准确预测现货市场电价变化趋势,是售电公司降低购售电风险的重要保障。为此,根据现货市场中电价的特性,提出基于集成经验模态分解(ensemble empirical mode decomposition,EEMD)、支持向量机(support vector machine,SVM)和自回归移动平均模型(autoregressive moving average,ARMA)的组合预测模型。首先利用EEMD将历史数据分解成一系列相对比较平稳的分量序列;其次,利用遗传算法(genetic algorithm,GA)优化的SVM预测高频分量,利用自回归移动平均模型预测低频分量;最后将各子序列的预测结果求和作为最终预测结果。用美国售电公司真实数据进行预测,并与其他模型进行比较。算例结果表明所提模型的预测精度更高。 相似文献
17.
18.
19.
为了提高传感器输出时间序列的实时预测精度,分析了时间序列可以预测的内在机理,认为噪声是影响预测精度的主要因素,提出了小波滤波与神经网络相结合的组合预测法,研究了最小二乘支持向量机的预测法,并选用了典型的过程变量信号,将两种方法进行了比较.仿真实验结果表明,小波滤波与神经网络相结合的组合预测法能够在消除测量噪声对预测精度... 相似文献
20.
风力发电具有波动性、随机性和间歇性,因此准确预测风电场的日有功功率对风电场与电力系统的稳定运行具有重要的意义。利用C-C法对风电场的日有功功率时间序列进行相空间重构,并通过计算其最大Lyapunov指数,验证了此功率时间序列具有混沌属性。在此基础上,用相空间重构建立了RBF神经网络和最小二乘支持向量机预测模型,对预测结果采用协方差优选确定权重,进行组合预测。通过对甘肃省酒泉地区某风电场的实测数据进行仿真,证明了该组合模型的有效性和可行性,并有效提高了预测精度。 相似文献