首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
针对既有建筑物中出现的剪力墙开洞问题,运用ANSYS建立了不同RC支撑加固剪力墙开洞的有限元模型,着重从侧移与承载力方面分析其加固效果。结果表明:既有剪力墙开洞后,墙体的顶点最大位移超过规范要求,墙体的承载力下降较多;采用不同的RC支撑加固后,墙体的极限位移较加固前均有所减小,屈服荷载与极限荷载有所提高;采用QZC5型支撑加固能将开洞剪力墙的承载力提高到未开洞时的水平,墙体的弹塑性位移角亦满足规范的规定。  相似文献   

2.
低周反复荷载作用下轻骨料混凝土开洞低剪力墙试验研究   总被引:2,自引:0,他引:2  
通过钢筋轻骨料混凝土开洞低剪力墙在低周反复荷载作用下的试验研究,探讨了洞口大小和位置对剪力墙延性及耗能性能等的影响。由于洞口角部产生应力集中,开洞墙体的开裂荷载小于未开洞墙体。洞口位置对于具有对称墙肢的小开洞剪力墙极限承载力影响不大,但对结构延性及耗能能力有一定的影响。  相似文献   

3.
为探究错列开洞剪力墙的抗震性能,通过有限元软件ABAQUS对错列开洞剪力墙抗震试验进行数值模拟,通过试验结果验证所建立精细化有限元模型的准确性。基于已验证的有限元模型开展参数分析,研究剪跨比、轴压比、开洞率以及有无附加纵筋等参数对错列开洞剪力墙抗震性能的影响。结果表明:不考虑轴压比时,剪跨比较大的剪力墙主要破坏于底部翼缘及墙体; 随着剪跨比的提高,剪力墙的峰值荷载减小,延性提高; 随着轴压比的提高,剪力墙的延性降低,峰值荷载先增加后减小,且峰值荷载的拐点在轴压比为0.2~0.5之间; 剪力墙的峰值荷载和延性随开洞率的提高而降低; 考虑附加纵筋时,若错列开洞剪力墙的开洞率较小且满足规范基本要求时,可以按照无洞口剪力墙计算其承载力; 考虑了附加纵筋影响的错列开洞剪力墙具有较好的承载力和延性,无附加纵筋的错列开洞剪力墙应力集中现象较严重; 开洞率较小时,剪力墙底部是薄弱区域,以剪切破坏为主; 开洞率较大时,剪力墙受到不协调的变形作用而发生破坏。  相似文献   

4.
采用粘钢加固法对钢筋混凝土开洞剪力墙进行加固,并利用有限元软件ANSYS建立了加固前和加固后开洞剪力墙的有限元模型,对模型进行静力性能对比分析,结果表明:粘钢加固法能有效的提高开洞剪力墙的开裂荷载和屈服荷载;在相同荷载作用下,加固后的剪力墙裂缝数量明显减少,等效应力最大值也有所减小;加固前开洞剪力墙的位移随着荷载增加而增大较快,加固后增大速度有所减小;总体来说,加固效果明显,加固方法可行有效。  相似文献   

5.
为明确波形钢板剪力墙不发生屈曲的界限条件并分析开洞对其承载力及耗能能力的影响,基于波形钢板剪切屈曲理论推导其屈曲应力计算式,并采用数值分析及变形等级划分方法得到约束刚度比取值范围,由此提出波形钢板剪力墙不发生屈曲的界限条件为屈曲应力大于剪切屈服应力且约束刚度比大于3。通过对比开洞模型的变形等级计算参数,验证界限条件对开洞波形钢板墙的适用性,建立有限元模型研究钢板墙高宽比、钢板厚度、开洞率、洞口高宽比及洞口位置对波形钢板墙承载力及耗能能力的影响。结果表明:钢板高宽比越小、板厚越大,开洞对其承载力及耗能能力的削弱程度越大,洞口高宽比在0.33~0.5之间时开洞波形钢板墙的承载力及耗能最大,中心开洞时的最小。基于波形钢板剪力墙全截面剪切屈服的受力机理对其受剪承载力和塑性耗能计算式进行推导,并通过拟合得到考虑洞口参数影响的开洞波形钢板剪力墙受剪承载力及耗能折减系数计算式;通过9组不开洞模型和30组不同洞口尺寸及位置的开洞模型对计算式的有效性进行验证。结果表明计算值与模拟值的误差均在15%以内,适用于满足无屈曲界限条件的开洞波形钢板剪力墙。  相似文献   

6.
文章一共建立6个模型探讨门窗洞口对冷弯薄壁型钢结构组合墙体的抗剪承载力的影响,利用ANSYS有限元分析软件进行组合墙体抗剪承载力的几何非线性和材料非线性的分析,结果表明:当开洞较小时,洞口位置对抗剪承载力影响不大;随着洞口的增大,组合墙体抗剪承载力逐渐降低,墙体抗侧移刚度也不断减小。  相似文献   

7.
沈巍  李强  于仲秋 《建筑施工》2021,43(11):2259-2261
结合工程实际案例,介绍了一种地下室顶板侧梁开洞加固及防水施工工艺.经技术团队优化,提出采用粘钢加固与套管安装相结合的方案:梁内外侧采用粘钢加固,套管与粘钢焊接.现场实践证明,此种工艺施工简单、施工周期短,既能达到洞口加固目的 ,又能保证外墙防渗漏质量,为地下结构开洞等类似情况提供了较好的解决方案,值得推广应用.  相似文献   

8.
为明确波形钢板剪力墙不发生屈曲的界限条件并分析开洞对其承载力及耗能能力的影响,基于波形钢板剪切屈曲理论推导其屈曲应力计算式,并采用数值分析及变形等级划分方法得到约束刚度比取值范围,由此提出波形钢板剪力墙不发生屈曲的界限条件为屈曲应力大于剪切屈服应力且约束刚度比大于3。通过对比开洞模型的变形等级计算参数,验证界限条件对开洞波形钢板墙的适用性,建立有限元模型研究钢板墙高宽比、钢板厚度、开洞率、洞口高宽比及洞口位置对波形钢板墙承载力及耗能能力的影响。结果表明:钢板高宽比越小、板厚越大,开洞对其承载力及耗能能力的削弱程度越大,洞口高宽比在0.33~0.5之间时开洞波形钢板墙的承载力及耗能最大,中心开洞时的最小。基于波形钢板剪力墙全截面剪切屈服的受力机理对其受剪承载力和塑性耗能计算式进行推导,并通过拟合得到考虑洞口参数影响的开洞波形钢板剪力墙受剪承载力及耗能折减系数计算式;通过9组不开洞模型和30组不同洞口尺寸及位置的开洞模型对计算式的有效性进行验证。结果表明计算值与模拟值的误差均在15%以内,适用于满足无屈曲界限条件的开洞波形钢板剪力墙。  相似文献   

9.
某18层钢筋混凝土框架-剪力墙结构,根据使用功能要求,需在1层增设夹层。考虑将夹层荷载传递给剪力墙及后置钢柱。然而,施工不当致使剪力墙开洞。在剪力墙上开洞不仅截断了剪力墙的纵向钢筋和水平钢筋,同时削弱了剪力墙的截面尺寸,导致剪力墙不满足轴压比限值和平面外稳定性的要求,存在安全隐患。针对此问题,提出了剪力墙洞口内置带肋钢套筒,焊接剪力墙洞口截断钢筋及洞口封堵的方案,使封堵后剪力墙结构安全性不低于原设计标准,加固方法可供同类加固改造工程参考。  相似文献   

10.
粘钢加固钢筋混凝土剪力墙抗震性能试验研究   总被引:2,自引:0,他引:2  
通过一组试验研究不同粘钢加固方式对钢筋混凝土剪力墙抗震性能的影响.本研究设计制作了6片钢筋混凝土剪力墙,并对这些试件进行了拟静力低周反复加载试验,这6个试件包括不经加固的混凝土剪力墙、只用水平U形箍加固的剪力墙、用水平U形箍和竖向钢材加固但端部锚固方式不同的剪力墙.在试验中记录了各试件在水平反复荷载下的荷载-位移滞回曲线、钢筋应变、墙体裂缝分布及墙体的破坏现象.分析了不同粘钢加固方式对混凝土剪力墙水平承载力、位移延性、耗能能力的影响.试验结果表明以粘钢加固的方式加固钢筋混凝土剪力墙,可以有效地改善剪力墙的抗震性能,并且,可靠的端部锚固方式对粘钢加固剪力墙的抗震性能也至关重要.  相似文献   

11.
冷弯薄壁型钢组合墙体主要由冷弯薄壁型钢骨架和外敷面板组成,结构轻巧,绿色环保,多用于中低层建筑,一般在施工现场拼装完成.为提升墙体的施工速度和安装效率,在墙体四周增设焊接刚性边框,提出一种新型装配式刚边框-冷弯薄壁型钢骨架组合墙体,该墙体在工厂预制完成,现场采用螺栓与周围构件连接.建立有限元模型分析面板类型、斜撑、螺钉...  相似文献   

12.
为研究双波形钢板剪力墙的滞回性能,利用有限元软件ABAQUS分别建立单波形钢板剪力墙与双波形钢板剪力墙的有限元模型,对2种波形钢板剪力墙在低周往复荷载作用下的受力机制及滞回性能进行对比分析,研究了内嵌波形钢板的设计参数对双波形钢板剪力墙滞回性能的影响规律,给出了波形钢板设计参数的取值建议。结果表明:与单波形钢板剪力墙相比,双波形钢板剪力墙的抗侧刚度、承载能力及耗能能力均提高,但其延性有一定程度的降低; 内嵌波形钢板的厚度与波形几何尺寸是影响双波形钢板剪力墙滞回性能的关键参数,随着厚度的增大,双波形钢板剪力墙的抗侧刚度、承载能力、耗能能力及延性均提高; 随着波长的增加,双波形钢板剪力墙的抗侧刚度提高,但承载能力及耗能能力降低; 随着波幅的增加,双波形钢板剪力墙的抗侧刚度降低,但承载能力及耗能能力均提高。  相似文献   

13.
李然  郭兰慧  张素梅 《工业建筑》2011,41(7):107-113
两边连接钢板剪力墙侧边由于受压屈曲产生较大变形,削弱其承载力和耗能能力。在两侧边采取加劲措施可以增强两侧边的稳定性,并在一定程度上提高承载能力和耗能能力。采用ANSYS有限元软件对侧边理想加劲的两边连接钢板剪力墙进行滞回分析,研究在理想加劲情况下,加劲肋对两边连接钢板剪力墙受力模式、承载能力和耗能能力的影响。分析结果表...  相似文献   

14.
为了研究采用钢板焊接连接的带水平接缝预制装配式钢筋混凝土剪力墙的抗震性能,设计了4个装配式钢筋混凝土剪力墙足尺试件并进行低周往复水平荷载试验,研究参数包括连接钢板厚度、侧向钢板设置和轴压比。结果表明:各试件均为压弯破坏,水平承载力在186~288kN之间,极限位移在25.74~29.37mm之间,滞回曲线为饱满的弓形,延性和耗能能力较好,刚度退化较慢;在连接钢板满足强度要求前提下,增大连接钢板厚度、增加侧向钢板对剪力墙的延性、刚度、承载能力和耗能能力影响较小;提高轴压比可以明显提高装配式剪力墙的刚度和承载能力,但会降低其耗能能力。采用ABAQUS有限元软件对装配式剪力墙抗震性能进行分析,所建立的有限元模型可以较好地模拟装配式剪力墙的受力性能。通过对比采用规范公式计算的承载力与试验承载力,表明可以采用JGJ 3—2010《高层建筑混凝土结构技术规程》中的公式计算文中装配式剪力墙的承载力,并给出了连接钢板的计算方法。  相似文献   

15.
为研究装配式剪力墙竖向浆锚连接的钢筋锚固性能及结合面受剪性能,以插筋配筋率为参数进行了3组搭接试验和2组抗剪试验,确定了其竖向插筋的搭接长度,得到了抗剪试件结合面的承载力、破坏模式和荷载-滑移关系曲线。试验结果表明:选取的钢筋搭接长度能够满足承载力要求;同一试件中,结合面1(后浇混凝土与抗剪键相连的界面)先于结合面2(后浇混凝土与凹槽连接的界面)破坏;插筋配筋率对结合面开裂荷载影响较小,但对受剪承载力影响较大;抗剪试件破坏时凹槽附近易发生混凝土脱落,建议剪力墙受拉钢筋直径尽量大于8 mm。采用ABAQUS软件对抗剪试验进行了有限元模拟,并分析了后浇混凝土强度、后浇带宽度和凹槽长度等参数对结合面受剪承载力的影响。分析结果表明:提高后浇混凝土强度可使结合面受剪承载力提高;在满足锚固需求条件下,增加后浇带宽度可提高墙体的受剪承载力,减少凹槽长度对墙体受剪承载力影响较小。  相似文献   

16.
为深入揭示无支撑置换混凝土加固过程中剪力墙的受力变化规律,对某剪力墙住宅结构无支撑置换加固施工进行全过程监测。基于ABAQUS有限元分析软件,采用生死单元、等效升温以及添加场变量的方法实现剪力墙施工全过程模拟。结合施工监测数据及有限元模拟结果分析了置换剪力墙及与置换剪力墙相连的梁、楼板受力变化过程; 最后给出了考虑应力重分布后,无支撑分段置换墙体正截面受压承载力计算方法。结果表明:有限元模拟方法能有效模拟混凝土无支撑置换加固施工过程; 由于剪力墙分段拆除和置换,墙体出现了应力重分布现象,且应力重分布程度与墙体分段施工顺序有关; 应力重分布会引起墙体洞口处出现应力集中,但应力集中对加固效果的影响较小,同时还会影响与置换剪力墙相邻的连梁、楼板结构的受力,导致该处应力增加; 建议对剪力墙结构进行无支撑置换加固时,有必要通过分段优化设计和受压承载力复核控制应力重分布的影响。  相似文献   

17.
为促进高性能绿色建筑结构发展,推动高强钢筋和中高强再生混凝土的工程应用,研发了边缘构件采用环筋扣合连接方式且配置高强纵筋的装配式中高强再生混凝土剪力墙,对6个剪跨比为2.2的装配式混凝土剪力墙进行了低周反复荷载试验。分析了不同再生粗骨料取代率、混凝土强度、边缘暗柱纵筋强度及搭接位置对装配式再生混凝土剪力墙的破坏形态、滞回性能、承载力、延性、刚度退化规律、耗能能力等抗震性能指标以及可恢复性能的影响。试验结果表明:边缘构件配置高强钢筋的装配式中高强再生混凝土剪力墙的破坏形态以弯曲破坏为主;再生粗骨料取代率对装配式中高强再生混凝土剪力墙的承载力、延性和耗能能力影响不大,各剪力墙均具有较好的抗震性能;边缘暗柱采用HRB600纵筋可有效提高装配式中高强再生混凝土剪力墙的承载力、耗能能力和可恢复性能;边缘暗柱纵筋在剪力墙底部塑性铰区搭接,会导致装配式中高强再生混凝土剪力墙的延性明显下降。给出了边缘配置HRB600纵筋的装配式中高强再生混凝土剪力墙水平承载力计算式,计算结果表明普通混凝土剪力墙的水平承载力计算模型同样适用于该装配式剪力墙结构。  相似文献   

18.
在水平地震作用下,低轴压比的单排配筋混凝土剪力墙易在底部施工缝处产生剪切滑移现象,影响其耗能能力,在剪力墙底部配置斜向钢筋可以较好地避免此现象发生。为研究配置斜筋单排配筋混凝土双肢剪力墙的抗震性能,对3个1/2缩尺的单排配筋混凝土双肢剪力墙进行了拟静力试验,研究了在墙肢及连梁中配置斜筋对混凝土双肢剪力墙破坏机制与抗震性能的影响。对比分析了配置斜筋双肢墙与未配置斜筋双肢墙的破坏形态、滞回特性、承载力、延性、刚度和耗能能力。试验结果表明:在墙肢配筋量相同的条件下,在墙肢底部设置适量的斜筋,可提高双肢墙的延性和耗能能力,并对其破坏机制产生影响;在墙肢分布钢筋量不变条件下,在墙肢底部和连梁中增设斜筋,可明显提高双肢墙的延性和耗能能力。  相似文献   

19.
为了提高矮墙的轴向稳定性以及侧向变形能力,在墙体中部布置多根钢管,形成钢管混凝土矮墙的形式。通过对5片剪跨比为0.95的矮墙试件在高轴压比(0.5)下的拟静力试验,研究了其承载力、变形能力、破坏形态、滞回耗能等抗震性能,并给出了内部钢筋与钢管应变。主要设计参数为钢管布置、轴压比、抗剪件类型以及钢管间连接。试验结果表明:钢管混凝土矮墙在峰值荷载之前呈现明显的剪切受力状态,腹板上布满大量剪切裂缝;峰值荷载之后损伤集中于钢管部位,形成开缝墙的受力模式,侧向变形能力得到明显提升;加载结束时墙体腹板混凝土剥落,但墙体仍然具有很好的竖向与侧向稳定性。墙体的峰值位移角约为1/290~1/106,极限位移角达到1/70,并且滞回性能明显改善,表明钢管混凝土矮墙具有良好的抗震性能和抗倒塌能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号