首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We developed a new method of determining acoustical physical constants (elastic constant, piezoelectric constant, dielectric constant, and density) of piezoelectric materials with high accuracy. This method acquires velocities of leaky surface acoustic waves (LSAWs) excited on the water-loaded specimen surface, measured by line-focus-beam (LFB) acoustic microscopy, and bulk velocities of longitudinal and shear waves, measured with planewave transducers replacing the LFB device in the same system, together with the dielectric constants and density measured independently, for a small number of specimens. For LiNbO3 and LiTaO3 crystals, we demonstrated that we could accurately determine the constants by choosing proper propagation directions of LSAWs and bulk waves for three principal X-, Y-, and Z-cut specimens and one rotated Y-cut specimen [(104) plate for LiNbO3 and (012) plate for LiTaO3]. The accuracy is nearly the same as that for the constants determined only from the bulk wave velocities  相似文献   

2.
The acoustical physical constants (elastic constant, piezoelectric constant, dielectric constant, and density) of commercial surface acoustic wave (SAW)-grade LiNbO(3) and LiTaO(3) single crystals were determined by measuring the bulk acoustic wave velocities, dielectric constants, and densities of many plate specimens prepared from the ingots. The maximum probable error in each constant was examined by considering the dependence of each constant on the measured acoustic velocities. By comparing the measured values of longitudinal velocities that were not used to determine the constants with the calculated values using the previously mentioned constants, we found that the differences between the measured and calculated values were 1 m/s or less for both LiNbO(3) and LiTaO(3) crystals. These results suggest that the acoustical physical constants determined in this paper can give the values of bulk acoustic wave velocities with four significant digits.  相似文献   

3.
Accurate measurements of the acoustical physical constants (elastic constants, piezoelectric constants, dielectric constants, and density) of commercially available and widely used surface acoustic wave (SAW)-grade synthetic α-quartz are reported. The propagation directions and modes of bulk waves optimal for accurately determining the constants were selected through numerical calculations, and three principal X-, Y-, and Z-cut specimens and several rotated Y-cut specimens were prepared from a single crystal ingot to determine the constants and to confirm their accuracy. All of the constants were determined through highly accurate measurements of the longitudinal velocities, shear velocities, dielectric constants, and density. The velocity values measured for the specimens that were not used to determine the constants agreed well with those calculated from the determined constants, within a difference of ±0.20 m/s (±0.004%)  相似文献   

4.
Application of line-focus-beam (LFB) acoustic microscopy is extended to characterization of substrates for SH-type SAW devices. Theoretical and experimental studies on a wave mode for characterization are carried out on 36°Y-cut LiTaO3 wafers. A Rayleigh-type mode of leaky surface acoustic waves (LSAWs) must be employed instead of an SH-type mode of leaky pseudo-surface waves (LPSAWs). Experimental results show that the LSAW propagation should be directed along the X-axis because the LSAW velocities are more sensitive to chemical composition and elastic inhomogeneities. The relations among the LSAW velocities, densities, and Curie temperatures are determined. The LSAW velocity increases linearly at the rate of 0.52 m/s/°C with the Curie temperature. A chemical composition change of 0.03 Li2 O-mol%, corresponding to temperature resolution of better than 0.3°C, is easily detected by the velocity measurements. Elastic inhomogeneities due to residual multi-domains, produced during the poling process during wafer fabrication, are interpreted quantitatively by this ultrasonic technology  相似文献   

5.
Absolute accuracy of the line-focus-beam (LFB) acoustic microscopy system is investigated for measurements of the leaky surface acoustic wave (LSAW) velocity and attenuation, and a method of system calibration is proposed. In order to discuss the accuracy, it is necessary to introduce a standard specimen whose bulk acoustic properties, (e.g., the independent elastic constants and density) are measured with high accuracy. Single crystal substrates of gadolinium gallium garnet (GGG) are taken as standard specimens. The LSAW propagation characteristics are measured and compared with the calculated results using the measured bulk acoustic properties. Calibration is demonstrated for the system using two LFB acoustic lens devices with a cylindrical concave surface of 1-mm radius in the frequency range 100 to 300 MHz.  相似文献   

6.
We developed experimental procedures to evaluate glass materials using the line-focus-beam ultrasonic-material-characterization (LFB-UMC) system. We prepared 28 specimens of a commercial borosilicate glass from random lots, and measured the velocities of leaky-surface acoustic waves (LSAWs) and leaky-surface-skimming compressional waves (LSSCWs), VLSAW and VLSSCW, using V(z) curve measurements at 225 MHz and 23 degrees C. The velocities for VLSAW ranged from 3121.83 m/s to 3149.77 m/s, with a maximum deviation of 27.94 m/s. The velocities for VLSSCW ranged from 5547.7 m/s to 5585.0 m/s, with a maximum deviation of 37.3 m/s. To investigate these observed variations in VLSAW and VLSSCW, we measured the bulk acoustic wave (BAW) properties, viz., longitudinal and shear velocities, then the densities and the chemical compositions of 8 of the 28 specimens. The LFB-UMC measurements confirmed that decreases in VLSAW and VLSSCW occur mainly with the B2O3 dopant concentrations, corresponding to the decrease of shear-wave and longitudinal-wave velocities that are caused by the decrease of the stiffness constants c44 and c11, respectively, rather than with decreased densities. The sensitivities are -6.36 x 10(-2) wt%/(m/s) for VLSAW and -4.87 x 10(-2) wt%/(m/s) for VLSSCW. This demonstrates that the LFB-UMC system is effective for evaluating glass materials and controlling production processes, by analyzing variations in chemical composition through the super-accurate velocity measurements of LSAWs and LSSCWs.  相似文献   

7.
Experimental procedures and standard specimens for characterizing and evaluating TiO2-SiO2 ultra-low expansion glasses with periodic striae using the line-focus-beam (LFB) ultrasonic material characterization system are discussed. Two types of specimens were prepared, with specimen surfaces parallel and perpendicular to the striae plane using two different grades of glass ingots. The inhomogeneities of each of the specimens were evaluated at 225 MHz. It was clarified that parallel specimens are useful for accurately measuring velocity variations of leaky surface acoustic waves (LSAWs) excited on a water-loaded specimen surface associated with the striae. Perpendicular specimens are useful for obtaining periodicities in the striae for LSAW propagation perpendicular to the striae plane on a surface and for precisely measuring averaged velocities for LSAW propagation parallel to the striae plane. The standard velocity of Rayleigh-type LSAWs traveling parallel to the striae plane for the perpendicular specimens was numerically calculated using the measured velocities of longitudinal and shear waves and density. Consequently, a reliable standard specimen with an LSAW velocity of 3308.18 +/- 0.35 m/s at 23 degrees C and its temperature coefficient of 0.39 (m/s)/degrees C was obtained for a TiO2-SiO2 glass with a TiO2 concentration of 7.09 wt%. A basis for the striae analysis using this ultrasonic method was established.  相似文献   

8.
Experimental procedures and standard specimens for characterizing and evaluating TiO/sub 2/-SiO/sub 2/ ultralow expansion glasses with periodic striae using the line-focus-beam (LFB) ultrasonic material characterization system are discussed. Two types of specimens were prepared, with specimen surfaces parallel and perpendicular to the striae plane using two different grades of glass ingots. The inhomogeneities of each of the specimens were evaluated at 225 MHz. It was clarified that parallel specimens are useful for accurately measuring velocity variations of leaky surface acoustic waves (LSAWs) excited on a water-loaded specimen surface associated with the striae. Perpendicular specimens are useful for obtaining periodicities in the striae for LSAW propagation perpendicular to the striae plane on a surface and for precisely measuring averaged velocities for LSAW propagation parallel to the striae plane. The standard velocity of Rayleigh-type LSAWs traveling parallel to the striae plane for the perpendicular specimens was numerically calculated using the measured velocities of longitudinal and shear waves and density. Consequently, a reliable standard specimen with an LSAW velocity of 3308.18 /spl plusmn/ 0.35 m/s at 23/spl deg/C and its temperature coefficient of 0.39 (m/s)//spl deg/C was obtained for a TiO/sub 2/-SiO/sub 2/ glass with a TiO/sub 2/ concentration of 7.09 wt%. A basis for the striae analysis using this ultrasonic method was established.  相似文献   

9.
Diamond has the highest surface acoustic wave (SAW) velocity among all materials and thus can provide much advantage for fabrication of high frequency SAW devices when it is combined with a piezoelectric thin film. Basic SAW properties of layered structures consisting of a piezoelectric material layer, a diamond layer and a substrate were examined by theoretical calculation. Rayleigh mode SAW's with large SAW velocities up to 12,000 m/s and large electro-mechanical coupling coefficients from 1 to 11% were found to propagate in ZnO/diamond/Si, LiNbO3/diamond/Si and LiTaO3/diamond/Si structures. It was also found that a SiO2/ZnO/diamond/Si structure can realize a zero temperature coefficient of frequency with a high phase velocity of 8,000-9,000 m/s and a large electro-mechanical coupling coefficient of up to 4%  相似文献   

10.
Brillouin light scattering (BLS) has been used to investigate the elastic properties of polycrystalline AIN films, about 1 μm thick, grown by DC-reactive magnetron sputtering on Si3N4 coated (100)-Si substrates. Taking advantage from the detection of a number of different acoustic modes, a complete elastic characterization of the films has been achieved. The elastic constants c11 and c66 have been selectively determined from detection of the longitudinal and of the shear horizontal bulk modes, respectively, travelling parallel to the film surface. The three remaining elastic constants, namely c44, c33 and c13, have been obtained from detection of the Rayleigh surface wave and of the longitudinal bulk wave propagating at different angles from the surface normal. The values of the elastic constants of these sputtered AIN films depend on the deposition conditions and on the microstructural properties of the films, especially oxygen contamination and quality of texture. In the case of the films with the best degree of texture and the lowest oxygen content, the values of the elastic constants are rather close to those previously determined in epitaxial A1N films grown at high temperature by MOCVD. This demonstrates that sputter deposition at relatively low temperature can be used to grow high quality A1N films on Si and is of great importance in view of the integration of these films in the technology of IC semiconductors.  相似文献   

11.
Discusses acoustic losses in synchronous leaky surface acoustic wave (LSAW) resonators on rotated Y-cut lithium tantalate (LiTaO3 ) substrates. Laser probe measurements and theoretical models are employed to identify and characterize the radiation of leaky waves into the busbars of the resonator and the excitation of bulk acoustic waves. Escaping LSAWs lead to a significant increase in the conductance, typically occurring in the vicinity of the resonance and in the stopband, but they do not explain the experimentally observed deterioration of the electrical response at the antiresonance. At frequencies above the stopband, the generation of fast shear bulk acoustic waves is the dominant loss mechanism  相似文献   

12.
This work reports on the determination of langatate elastic and piezoelectric constants and their associated temperature coefficients employing 2 independent methods, the pulse echo overlap (PEO) and a combined resonance technique (CRT) to measure bulk acoustic wave (BAW) phase velocities. Details on the measurement techniques are provided and discussed, including the analysis of the couplant material in the PEO technique used to couple signal to the sample, which showed to be an order of magnitude more relevant than the experimental errors involved in the data extraction. At room temperature, elastic and piezoelectric constants were extracted by the PEO and the CRT methods and showed results consistent to within a few percent for the elastic constants. Both raw acquired data and optimized constants, based on minimization routines applied to all the modes involved in the measurements, are provided and discussed. Comparison between the elastic constants and their temperature behavior with the literature reveals the recent efforts toward the consistent growth and characterization of LGT, in spite of significant variations (between 1 and 30%) among the constants extracted by different groups at room temperature. The density, dielectric permittivity constants, and respective temperature coefficients used in this work have also been independently determined based on samples from the same crystal boule. The temperature behavior of the BAW modes was extracted using the CRT technique, which has the advantage of not relying on temperature dependent acoustic couplants. Finally, the extracted temperature coefficients for the elastic and piezoelectric constants between room temperature and 120degC are reported and discussed in this work.  相似文献   

13.
A method is presented to determine the elastic constants and the mass density of isotropic and anisotropic solids and anisotropic thin films. The velocity and attenuation of leaky surface acoustic waves (SAWs) have been obtained for specified propagation directions from V(z) curves measured by line-focus acoustic microscopy (LFAM). The experimentally obtained velocities have been compared to velocities obtained from a measurement model for the V(z) curve which simulates the experiment. Since the measured and simulated V(z) curves have the same systemic errors, the material constants are free of such errors. For an isotropic solid, Young's modulus E, the shear modulus G and the mass density ρ have been determined from the leaky Rayleigh wave velocity and attenuation, measured by LFAM, and a longitudinal wave velocity measured by a pulse-echo transit-time technique. For a cubic-crystalline solid, the ratios of the elastic constants to the mass density (c11 /ρ, c12/ρ, c44/ρ) have been determined from the directional variation of measured SAW velocities, using a preliminary estimate of ρ. The mass density ρ has subsequently been determined by additionally using the attenuation of leaky SAWs in crystal symmetry directions. For a cubic-crystalline thin film deposited on a substrate, the elastic constants and the mass density (c11, c12, c44, ρ) of the film have been determined from the directional variation of the measured SAW velocities, and a comparison of the corresponding attenuation coefficient with the measured attenuation coefficient has been used to verify the results  相似文献   

14.
We investigated standard specimens for accurately calibrating the line-focus-beam ultrasonic material characterization (LFB-UMC) system without system dependencies. We evaluated several types of lithium tantalate (LiTaO3) substrates using two LFB-UMC systems with different device/system characteristics to measure and calibrate the propagation characteristics of the leaky surface acoustic waves (LSAWs), and analyzed the variations between the calibrated results. We concluded from this analysis that, by selecting materials with the cut surfaces and propagation directions of standard specimens that are identical to the objects to be calibrated, calibration errors resulting from different performance characteristics between the two systems could be nearly eliminated. Also, analytical errors caused by the effects of spectra with two close peaks (another propagation wave mode), one of the most common problems of characterization in the past, could be eliminated at the same time by this method.  相似文献   

15.
Piezoelectric ZnO thin films have been successfully used for multilayer surface acoustic wave (SAW) and bulk acoustic wave (BAW) devices. Magnesium zinc oxide (Mg/sub x/Zn/sub 1-x/O) is a new piezoelectric material, which is formed by alloying ZnO and MgO. Mg/sub x/Zn/sub 1-x/O allows for flexibility in thin film SAW device design, as its piezoelectric properties can be tailored by controlling the Mg composition, as well as by using Mg/sub x/Zn/sub 1-x/O/ZnO multilayer structures. We report the metal-organic chemical vapor deposition (MOCVD) growth, structural characterization and SAW evaluation of piezoelectric Mg/sub x/Zn/sub 1-x/O (x<0.35) thin films grown on (011~2) r-plane sapphire substrates. The primary axis of symmetry, the c-axis, lies on the Mg/sub x/Zn/sub 1-x/O growth plane, resulting in the in-plane anisotropy of piezoelectric properties. SAW test devices for Rayleigh and Love wave modes, propagating parallel and perpendicular to the c-axis, were designed and fabricated. Their SAW properties, including velocity dispersion and piezoelectric coupling, were characterized. It has been found that the acoustic velocity increases, whereas the piezoelectric coupling decreases with increasing Mg composition in piezoelectric Mg/sub x/Zn/sub 1-x/O films.  相似文献   

16.
High-Q, bulk acoustic wave composite resonators based on a symmetric layer sequence of SiO2-AlN-SiO2 sandwiched between electrodes have been developed. Acoustic isolation was achieved by means of deep silicon etching to obtain membrane type thin film bulk acoustic wave resonators (TFBARs). Three different device versions were investigated. The SiO2 film thicknesses were varied (0 nm, 70 nm, 310 nm, and 770 nm) while the piezoelectric AlN film had a constant thickness of 1.2 μm. The sputter-deposited AlN film grown on the amorphous, sputter-deposited SiO2 layer exhibited a d33,f of 4.0 pm/V. Experimental results of quality factors (Q) and coupling coefficients (kt2) are in agreement with finite element calculations. A Q of 2000 is observed for the first harmonic of the 310 nm oxide devices. The most intense resonance of the 770 nm oxide device is the third harmonic reaching Q factors of 1450. The temperature drift reveals the impact of the SiO2 layers, which is more pronounced on the first harmonic, reducing the TCF to 4 ppm/K for the 3rd harmonic of the 310 nm oxide devices.  相似文献   

17.
Theoretical studies on the behavior of leaky-SAW (LSAW) properties in layered structures were performed. For these calculations rotYX LiTaO (3) and rotYX LiNbO(3) LSAW crystal cuts were used, assuming different layer materials. For LSAWs both the velocity and the inherent loss due to bulk wave emission into the substrate are strongly influenced by distinct layer parameters. As a result, these layer properties like elastic constants or thickness have shown a strong influence on the crystal cut angle of minimum LSAW loss. Moreover, for soft and stiff layer materials, a different shift of the LSAW loss minimum can occur. Therefore, using double-layer structures, the shift of the LSAW loss minimum can be influenced by appropriate chosen layers and ratios.  相似文献   

18.
Surface-acoustic-wave (SAW) measurement techniques can be effectively used to determine the acoustic properties of dielectric and piezoelectric films. Such films can be used for the development of semiconductor-integrated microwave-frequency surface and bulk acoustic wave devices. The acoustic properties of silicon nitride, silicon oxynitride, silicon carbide, and TEOS glass, deposited by plasma-enhanced chemical-vapor-deposition (PECVD) on GaAs, have been characterized using linear arrays of SAW interdigital electrodes operating in the harmonic mode over the frequency region from 30 MHz to above 1.0 GHz. The elastic constants of these amorphous films have been determined by fitting theoretical dispersion curves to the measured SAW velocity characteristics. Frequency-dependent SAW propagation-loss values have been determined from the observed linear change in loss as a function of transducer separation. Preliminary measurements of the temperature coefficient of frequency (TCF) for SAW propagation of the films on GaAs are also given  相似文献   

19.
Line-focus acoustic microscopy has been used to measure the phase velocities of surface acoustic waves on bare MgO and bare LaAlO3 , and on Nb2O5/MgO and BaTiO3/LaAlO3 thin-film/substrate configurations. The thin films are polycrystalline materials. The substrates are anisotropic single-crystals. The measured angular variation of the surface acoustic wave velocities has been used to determine the elastic constants of MgO substrate and Nb2O5 thin-film. It has been assumed that the Nb2O5 films may be considered as essentially isotropic. The measurements for LaAlO3 and BaTiO3/LaAlO3 show anomalies which are attributed to twinning in the LaAlO3 substrate  相似文献   

20.
A potential application for piezoelectric films on GaAs substrates is the monolithic integration of surface acoustic wave (SAW) devices with GaAs electronics. Knowledge of the SAW properties of the layered structure is critical for the optimum and accurate design of such devices. The acoustic properties of ZnO films sputtered on {001}-cut 〈110〉-propagating GaAs substrates are investigated in this article, including SAW velocity, effective piezoelectric coupling constant, propagation loss, diffraction, velocity surface, and reflectivity of shorted and open metallic gratings. The measurements of these essential SAW properties for the frequency range between 180 and 360 MHz have been performed using a knife-edge laser probe for film thicknesses over the range of 1.6-4 μm and with films of different grain sizes. The high quality of dc triode sputtered films was observed as evidenced by high K2 and low attenuation. The measurements of the velocity surface, which directly affects the SAW diffraction, on the bare and metalized ZnO on SiO2 or Si3N4 on {001}-cut GaAs samples are reported using two different techniques: 1) knife-edge laser probe, 2) line-focus-beam scanning acoustic microscope. It was found that near the 〈110〉 propagation direction, the focusing SAW property of the bare GaAs changes into a nonfocusing one for the layered structure, but a reversed phenomenon exists near the 〈100〉 direction. Furthermore, to some extent the diffraction of the substrate can be controlled with the film thickness. The reflectivity of shorted and open gratings are also analyzed and measured. Zero reflectivity is observed for a shorted grating. There is good agreement between the measured data and theoretical values  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号