首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wideband microstrip antennas with sandwich substrate   总被引:1,自引:0,他引:1  
A broadband microstrip antenna with low?high?low (sandwich) dielectric constant substrate combination using a microstrip line-via feed is presented for ultra-wideband applications. The proposed antenna consists of three dielectric substrates; low dielectric constant substrates that contain the microstrip feed line as well as parasitic patches and a high dielectric constant substrate that contains the driven patch. To achieve a large impedance bandwidth, parasitic patches and microstrip line-via combination feed to the driven patch in the multilayered microstrip antenna are used. The proposed antenna designed, fabricated and measured on the sandwich substrate. The antenna has measured 10 dB return loss bandwidth of 46.9% and directive gain .5.2 dBi at boresight across the impedance bandwidth. The total height of antenna is 5.77 mm or 0.077λ at 4 GHz.  相似文献   

2.
This paper proposes a new dielectric resonator antenna (DRA) design that can generate circularly polarized (CP) triple-band signals. A triple-band CP DRA antenna fed by a probe feed system is achieved with metal strips structure on side of DRA structure. The design start with conventional rectangular DRA with F shaped metal strips on DRA structure alongside the feed. Then, the F metal strip is enhanced by extending the length of the metal strip to obtain wider impedance bandwidth. Further improvement on the antenna performance is observed by improvised the conventional DRA structure. The method of removing part of DRA bottom resulted to higher antenna gain with triple band CP. The primary features of the proposed DRA include wide impedance matching bandwidth (BW) and broadband circular polarization (CP). The primary features of the proposed DRA include wide impedance matching bandwidth (BW) and broadband circular polarization (CP). The CP BW values recorded by the proposed antenna were ∼ 11.27% (3.3–3.65 GHz), 12.18% (4.17–4.69 GHz), and 1.74% (6.44–6.55 GHz) for impedance-matching BW values of 35.4% (3.3–4.69 GHz), 1.74% (5.36–5.44 GHz), and 1.85% (6.41–6.55 GHz) with peak gains of 6.8 dBic, 7.6 dBic, and 8.5 dBic, respectively, in the lower, central, and upper bands. The prototype of the proposed antenna geometry was fabricated and measured. A good agreement was noted between the simulated and the measured results.  相似文献   

3.
A simple and compact coplanar waveguide (CPW)-fed ultra-wideband (UWB) monopole-like slot antenna is presented. The proposed antenna comprises a monopole-like slot and a CPW fork-shaped feeding structure, which is etched onto an FR4 printed circuit board (PCB) with an overall size of 26 mm x 29 mm x 1.5 mm. The simulation and experiment show that the proposed antenna achieves good impedance matching, consistent gain, stable radiation patterns and consistent group delay over an operating bandwidth of 2.7?12.4 GHz (128.5%). Furthermore, through adding two more grounded open-circuited stubs, the proposed antenna design features band-notched characteristic in the band of 5?6 GHz while maintaining the desirable performance over lower/upper UWB bands of 3.1?4.85 GHz/6.2?9.7 GHz.  相似文献   

4.
Abstract

The experimental and simulated results for the proposed antenna are investigated in this article. Moreover, a novel broadband design of a circularly polarized (CP) single square slot antenna fed by a single coplanar waveguide is presented. By appropriately choosing the circumference of the square‐loop, the length of the protruded strip, and the gap, this proposed antenna thus owns good CP radiation and good impedance match simultaneously at the frequency of 2.45 GHz. This proposed antenna has the fundamental resonant frequency of 2.5 GHz with the minimum return loss of ‐39.9 dB. Furthermore, its impedance bandwidth is 460 MHz or 18.4% and 3‐dB axial‐ratio (AR) bandwidth is 360 MHz or 14.4% at 2.5 GHz.  相似文献   

5.
In this paper, the design and performance analysis of an Inkjet-printed metamaterial loaded monopole antenna is presented for wireless local area network (WLAN) and worldwide interoperability for microwave access (WiMAX) applications. The proposed metamaterial structure consists of two layers, one is rectangular tuning fork-shaped antenna, and another layer is an inkjet-printed metamaterial superstate. The metamaterial layer is designed using four split-ring resonators (SRR) with an H-shaped inner structure to achieve negative-index metamaterial properties. The metamaterial structure is fabricated on low-cost photo paper substrate material using a conductive ink-based inkjet printing technique, which achieved dual negative refractive index bands of 2.25–4.25 GHz and 4.3–4.6 GHz. The antenna is designed using a rectangular tuning fork structure to operate at WLAN and WiMAX bands. The antenna is printed on 30 × 39 × 1.27 mm3 Rogers RO3010 substrate, which shows wide impedance bandwidth of 0.75 GHz (2.2 to 2.95 GHz) with 2 dB realized gain at 2.4 GHz. After integrating metamaterial structure, the impedance bandwidth becomes 1.25 GHz (2.33 to 3.58 GHz) with 2.6 dB realized gain at 2.4 GHz. The antenna bandwidth and gain have been increased using developed quad SRR based metasurface by 500 MHz and 0.6 dBi respectively. Moreover, the proposed quad SRR loaded antenna can be used for 2.4 GHz WLAN bands and 2.5 GHz WiMAX applications. The contribution of this work is to develop a cost-effective inject printed metamaterial to enhance the impedance bandwidth and realized the gain of a WLAN/WiMAX antenna.  相似文献   

6.
A new family of microstrip-fed ultra-wideband (UWB) antennas with multiple (triple/quadruple) notched bands is proposed. The notched bands are generated by a band notched filter composed of double stepped impedance resonators (SIRs). Through tuning the characteristic impedance and the electrical length of each section of the SIRs, multiple notched bands as well as the desired high attenuation can be created in desired frequencies. Frequency domain measurements have been conducted to examine the band notched characteristics of the proposed antennas. Based on the analysis of antenna transfer function (S21), group delay and gain of the proposed antenna, it is shown that the proposed antenna is suitable for UWB applications or for multi-band applications.  相似文献   

7.
A simple dual-band microstrip-fed printed antenna for WLAN applications   总被引:1,自引:0,他引:1  
A novel microstrip-fed dual-band printed antenna for wireless local area network (WLAN) is presented. The antenna comprises a rectangular and a circular radiating element, which generate two resonant modes to cover 2.4/5.2/5.8 GHz WLAN bands. The design was experimentally verified by constructing the antenna on a FR4 (ϵr = 4.4) dielectric substrate (47 mm x 26 mm x 0.76 mm) and measuring its impedance and radiation characteristics at both the bands. The measured 10 dB return loss (VSWR 2:1) bandwidth in the 2.4G Hz band is 550 MHz (2.1?2.65 GHz) and it covers the bandwidth required for 2.4 GHz WLAN. The 5.2/5.8 GHz resonant mode has a bandwidth of 950 MHz (5.15?6.1 GHz) covering 5.2/5.8 GHz WLAN bands. A rigorous experimental evaluation confirmed that the dual-band printed antenna maintained good radiation characteristics with minimum cross-polarisation levels.  相似文献   

8.
Design of a microstrip-line-fed sleeve monopole antenna for broadband operation is proposed. This broadband design is achieved by properly selecting the sleeve length and the spacing between the monopole and sleeve. An important feature in the proposed design is that the impedance matching condition can be performed well even when a very small ground-plane length is used. In addition, the impedance bandwidth keeps nearly constant for the ground-plane length varied with a great range. Stable radiation patterns across the operating band are also observed.  相似文献   

9.
A novel broadband microstrip antenna under operation of TM1/2,0, TM10 and TM12 modes through a shorting wall and slots is proposed in this paper. Initially, an inverted U-shaped slot is adopted around the feeding point, which achieves a good impedance matching on TM10 mode and separates the patch into two parts. Additionally, a shorting wall is added underneath the edge of smaller patch to excite another one-quarter resonant mode, i.e., TM1/2,0 mode of smaller patch close to TM10 mode to expand the impedance bandwidth. Further, the antenna width is enlarged and two symmetrical vertical rectangular slots are cut on the patch to reduce the frequency of TM12 mode to form a broadband. Based on the arrangements above, a wide impedance bandwidth with three minima can finally be achieved. The results show that the impedance bandwidth of proposed antenna for |S11|<-10 dB is extended to 26.5% (23.5-30.67 GHz), which is three times of the conventional antenna at same profile. Moreover, a stable radiation pattern at broadside direction is realized over the operating band.  相似文献   

10.
A novel internal triple-band folded planar antenna for mobile handsets is introduced, formed by modifying the geometry of a rectangular patch antenna to include a shorting pin, folded sides, a shorted microstrip stub and a notch. The size of the antenna is successfully reduced to a volume of 34 times 34 times 7 times mm3. The antenna is mounted on a finite ground plane of 50times100 times mm2. The impedance bandwidth achieved was 29.7% (equivalent to return loss%%10%dB); this covers the DCS1800, PCS1900 and UMTS 2000 bands. The characteristics of the proposed antenna, including impedance bandwidth and far field radiation patterns are discussed theoretically and experimentally; the simulated and measured results show good agreement. The tuning effects of the geometry parameters on impedance matching of the proposed antenna are also investigated.  相似文献   

11.
Due to rapid growth in wireless communication technology, higher bandwidth requirement for advance telecommunication systems, capable of operating on two or higher bands with higher channel capacities and minimum distortion losses is desired. In this paper, a compact Ultra-Wideband (UWB) V-shaped monopole antenna is presented. UWB response is achieved by modifying the ground plane with Chichen Itzia inspired rectangular staircase shape. The proposed V-shaped is designed by incorporating a rectangle, and an inverted isosceles triangle using FR4 substrate. The size of the antenna is 25 mm×26 mm×1.6 mm. The proposed V-shaped monopole antenna produces bandwidth response of 3 GHz Industrial, Scientific, and Medical (ISM), Worldwide Interoperability for Microwave Access (WiMAX), (IEEE 802.11/HIPERLAN band, 5G sub 6 GHz) which with an additional square cut amplified the bandwidth response up to 8 GHz ranging from 3.1 GHz to 10.6 GHz attaining UWB defined by Federal Communications Commission (FCC) with a maximum gain of 3.83 dB. The antenna is designed in Ansys HFSS. Results for key performance parameters of the antenna are presented. The measured results are in good agreement with the simulated results. Due to flat gain, uniform group delay, omni directional radiation pattern characteristics and well-matched impedance, the proposed antenna is suitable for WiMAX, ISM and heterogeneous wireless systems.  相似文献   

12.
Two planar quasi-circular monopole antennas with rectangular and trapezoidal grounds are presented. The impedance bandwidths of the two antennas, defined by measured return loss better than 10 dB, are from 1.3 to 18.4 GHz and from 1.1 to 13.5 GHz, respectively. Both numerical and experimental results show that the proposed antenna with trapezoidal ground has significantly improved radiation performance, compared with the one with rectangular ground. Parameters and design considerations of the trapezoidal ground are discussed in detail. These novel monopole antennas have very wide impedance bandwidth, compact size and low fabrication cost, which are suitable for various broadband applications.  相似文献   

13.
This article introduces a novel, ultrawideband (UWB) planar monopole antenna printed on Roger RT/5880 substrate in a compact size for small Internet of Things (IoT) applications. The total electrical dimensions of the proposed compact UWB antenna are 0.19 λo × 0.215 λo × 0.0196 λo with the overall physical sizes of 15 mm × 17 mm × 1.548 mm at the lower resonance frequency of 3.8 GHz. The planar monopole antenna is fed through the linearly tapered microstrip line on a partially structured ground plane to achieve optimum impedance matching for UWB operation. The proposed compact UWB antenna has an operation bandwidth of 9.53 GHz from 3.026 GHz up to 12.556 GHz at −10 dB return loss with a fractional bandwidth (FBW) of about 122%. The numerically computed and experimentally measured results agree well in between. A detailed time-domain analysis is additionally accomplished to verify the radiation efficiency of the proposed antenna design for the ultra-wideband signal propagation. The fabricated prototype of a compact UWB antenna exhibits an omnidirectional radiation pattern with the low peak measured gain required of 2.55 dBi at 10 GHz and promising radiation efficiency of 90%. The proposed compact planar antenna has technical potential to be utilized in UWB and IoT applications.  相似文献   

14.
The performance of a triple-frequency meandered-strip monopole antenna for wireless application is presented. The proposed antenna comprises of a microstrip-fed monopole with an additional meandered strip and a ground plane with three protrudent strips on the opposite side of the substrate. By adding these shorted parasitic strips to this monopole, good impedance matching for multi-band application is obtained. Tuning effects of the additional shorted strips to the different resonant modes were examined and prototype of the proposed antenna had been constructed and experimentally studied. The measured results explore a broadband triple-frequency operation covering the required bandwidths of the PCS-1900/UMTS-2100 and the 2.4/5.2/5.8 GHz WLAN standards, a near-directive radiation pattern and a good antenna gain for this design.  相似文献   

15.
A novel single-layer planar monopole antenna is proposed for dual wideband operation. The antenna is a notched patch fed by a coplanar waveguide with two asymmetrical ground planes. The parametrical effects of the size of two such grounds and an embedded notch on the impedance matching condition have been examined theoretically. By fabricating and measuring the prototypes of the proposed antenna, two bands with 10 dB return loss bandwidths of about 490 MHz centred at 2.13 GHz band and of about 99.2% ranging from 3.32 to 6.9 GHz were obtained. A stable radiation pattern and average gains of greater than 2.6 and 4.8 dBi, respectively, over the two operating bands have also been obtained. These properties make the antenna suitable for multi-frequency wireless operation.  相似文献   

16.
This paper presents a compact Multiple Input Multiple Output (MIMO) antenna with WLAN band notch for Ultra-Wideband (UWB) applications. The antenna is designed on 0.8 mm thick low-cost FR-4 substrate having a compact size of 22 mm × 30 mm. The proposed antenna comprises of two monopole patches on the top layer of substrate while having a shared ground on its bottom layer. The mutual coupling between adjacent patches has been reduced by using a novel stub with shared ground structure. The stub consists of complementary rectangular slots that disturb the surface current direction and thus result in reducing mutual coupling between two ports. A slot is etched in the radiating patch for WLAN band notch. The slot is used to suppress frequencies ranging from 5.1 to 5.9 GHz. The results show that the proposed antenna has a very good impedance bandwidth of |S11| < −10 dB within the frequency band from 3.1–14 GHz. A low mutual coupling of less than −23 dB is achieved within the entire UWB band. Furthermore, the antenna has a peak gain of 5.8 dB, low ECC < 0.002 and high Diversity Gain (DG > 9.98).  相似文献   

17.
A compact, reconfigurable antenna supporting multiple wireless services with a minimum number of switches is found lacking in literature and the same became the focus and outcome of this work. It was achieved by designing a Th-Shaped frequency reconfigurable multi-band microstrip planar antenna, based on use of a single switch within the radiating structure of the antenna. Three frequency bands (i.e., 2007–2501 MHz, 3660–3983 MHz and 9341–1046 MHz) can be operated with the switch in the ON switch state. In the OFF state of the switch, the antenna operates within the 2577–3280 MHz and 9379–1033 MHz Bands. The proposed antenna shows an acceptable input impedance match with Voltage Standing Wave Ratio (VSWR) less than 1.2. The peak radiation efficiency of the antenna is 82%. A reasonable gain is obtained from 1.22 to 3.31 dB within the operating bands is achieved. The proposed antenna supports Universal Mobile Telecommunication System (UMTS)-1920 to 2170 MHz, Worldwide Interoperability and Microwave Access (WiMAX)/Wireless Broadband/(Long Term Evolution) LTE2500–2500 to 2690 MHz, Fifth Generation (5G)-2500/3500 MHz, Wireless Fidelity (Wi-Fi)/ Bluetooth-2400 to 2480 MHz, and Satellite communication applications in X-Band-8000 to 12000 MHz. The overall planar dimension of the proposed antenna is 40 × 20 mm2. The antenna was designed, along with the parametric study, using Electromagnetic (EM) simulation tool. The antenna prototype is fabricated for experimental validation with the simulated results. The proposed antenna is low profile, tunable, lightweight, cheap to fabricate and highly efficient and hence is deemed suitable for use in modern wireless communication electronic devices.  相似文献   

18.
简单有效的材料设计方法是最大程度发挥吸收剂吸波性能的关键.本研究提出了一种将匹配频率分别位于高、中、低频的三种高性能磁性吸波材料进行梯度叠层的设计方法.研究结果表明:利用此设计原理对球形羰基铁粉、片状羰基铁粉和片状FeSiAl合金三种吸收剂进行精确的阻抗渐变设计,充分发挥它们分别对高、中、低频电磁波的高效吸收,从而有效...  相似文献   

19.
A compact wideband printed slot antenna, suitable for wireless local area network (WLAN) and satisfying the worldwide interoperability for microwave access (WiMAX) applications, is proposed here. The antenna is microstrip-fed and its structure is based on Koch fractal geometry where the resonance frequency of a conventional triangular slot antenna is lowered by applying Koch iterations. The antenna size inclusive of the ground plane is compact and has a wide operating bandwidth. The proposed second iteration Koch slot antenna operates from 2.33 to 6.19 GHz covering the 2.4/5.2/5.8 GHz WLAN bands and 2.5/3.5/5.5 GHz WiMAX bands. The antenna exhibits omnidirectional radiation coverage with a gain better than 2.0 dBi in the entire operating band. Design equations for the proposed antenna are developed and their validity is confirmed on different substrates and for different slot sizes.  相似文献   

20.
We are developing multi-chroic antenna-coupled Transition Edge Sensor (TES) focal planes for Cosmic Microwave Background (CMB) polarimetry. In each pixel, a dual polarized sinuous antenna collects light over a two-octave frequency band. Each antenna couples to the telescope with a contacting silicon lens. The antenna couples the broadband RF signal to microstrip transmission lines, and then filter banks split the broadband signal into several frequency bands. A TES bolometer detects the power in each band and polarization. We will describe the design of this device and demonstrate its performance with optical data measured using prototype pixels. Our measurements show low ellipticity beams, low cross-polarization, and properly partitioned bands in banks of 2, 3, and 7 filters. Finally, we will describe how we will upgrade the Polarbear CMB experiment using the focal planes of these detectors to increase the experiment’s mapping speed and its ability to discriminate between the CMB and polarized foregrounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号