共查询到20条相似文献,搜索用时 25 毫秒
1.
Structural and optical properties of mechanically milled La-doped ZnO powders are presented in this paper. The Zn1−xLaxO phase formed when x varied in a range of 0.02-0.06 and milled at 400 rpm for 20 h. The secondary La2O3 phase occurred with an increase of La content. The crystallite and particle size decreased as a function of La content as x = 0-0.14 due to the effect of Zener pinning and solute drag. The absorption edge shifted to a lower wavelength when La content was increased to x = 0.14 because of the size effect. The energy band gap of Zn1−xLaxO powders varied in a range of 2.96-3.12 eV depending on the crystallite size. The broad emission bands in a visible region centered at about 640 nm are attributed to oxygen deficiency. 相似文献
2.
《Ceramics International》2016,42(13):14456-14462
Room temperature Al-doped ZnO (AZO) thin films with improved crystalline and optical properties were grown on normal glass substrates using unbalanced RF magnetron sputtering technique. To modify the plasma density towards the substrate and enhance the crystalline nature, an additional magnetic field ranging from 0 to 6.0 mT has been applied to the AZO target by proper tuning of solenoid coil current from 0 to 0.2 A respectively, which plays a significant role for controlling the physical properties of AZO films. The results from XRD studies indicate that all AZO films were composed of hexagonal wurtzite structure with better crystal quality through the applied magnetic field, ZnO (002) plane as a preferred growth. Furthermore, XPS studies suggested that symmetric chemical shifts in the binding energies for the Zn 2p and O1s levels with applied magnetic field. SEM analysis revealed the formation of a smooth, homogeneous and dense morphological surface with applied magnetic field. From AFM analysis, it was observed that the applied magnetic field strongly influenced the grain size and the films showed decreasing tendency in electrical resistivity. Films exhibited superior optical transmittance more than 94% in the visible region essentially due to the formation of better crystalline nature. The results indicate that improved band gap from 3.10 to 3.15 eV with additional magnetic field varied from 0 to 6.0 mT respectively. 相似文献
3.
Structural, optical and dielectric properties of Ni doped ZnO samples prepared by the solid state route are presented. X-ray diffraction confirmed the substitution of Ni on Zn sites without changing the hexagonal structure of ZnO. NiO phase appeared for 6% Ni doping. Fourier transform infrared measurements were carried out to study phonon modes in Ni doped ZnO. Significant blueshift with Ni doping was observed in UV–visible studies, strongly supported by photoluminescence spectra that show a high intensity UV emission peak followed by the low intensity green emission band corresponding to oxygen vacancies and defects. The photoluminescence analysis suggest that doping of Ni can affect defects and oxygen vacancies in ZnO and give the possibility of band gap tuning for applications in optoelectronic devices. High values of dielectric constant at low frequency and a strong dielectric anomaly around 320 °C were observed. 相似文献
4.
Five kinds of polyethylene-terephthalate (PET)/aluminum-doped zinc oxide (AZO) specimen were prepared to examine the effect of strain applied to the PET substrate before the coating of AZO film on the mechanical, optical, and electrical properties and morphology. An increase in the strain of PET increases the reflection intensity, resulting in a significant reduction in absorption. The largest mean surface roughness was obtained for the PET-4%/AZO specimen. XRD diffraction peaks of ZnO (002) indicate that the quality of the AZO film initially improved with increasing strain, and then degraded with further increases. Compressive residual stresses formed in the bending specimens at various strains; the residual stress increased with decreasing 2θ angle. A higher compressive stress in the AZO film resulted in a lower optical band gap and a lower transmittance; it also led to an increase in the sheet resistance of the AZO film, and thus a lower carrier mobility. 相似文献
5.
Sumetha Suwanboon Pongsaton AmornpitoksukApinya Sukolrat 《Ceramics International》2011,37(4):1359-1365
ZnO, Al-, Mg- and Ti-doped ZnO nanopowders were synthesized from CTAB-assisted oxalate intermediate by thermal decomposition method at 600 °C in air. All samples presented a hexagonal wurtzite structure. The spherical nanoparticles assembled in a porous octahedron-like shape for all samples. The size of Al-doped ZnO nanopowders increased as a function of Al ion concentration whereas the size of Mg- and Ti-doped ZnO nanopowders decreased when Mg and Ti ion concentrations were increased. The increment and reduction of their sizes can be explained by the Zener pinning effect. The Eg value of Al-doped ZnO nanopowders slightly decreased when Al ions were increased due to the crystallite size and defect concentration increased. In contrast, the Eg value of Mg- and Ti-doped ZnO nanopowders increased as a function of Mg and Ti ion concentration which can be explained by the Moss-Burstein effect. 相似文献
6.
ZnO nanorod arrays (NRAs) on transparent conductive oxide (TCO) films have been grown by a solution-free, catalyst-free, vapor-phase synthesis method at 600°C. TCO films, Al-doped ZnO films, were deposited on quartz substrates by magnetron sputtering. In order to study the effect of the growth duration on the morphological and optical properties of NRAs, the growth duration was changed from 3 to 12 min. The results show that the electrical performance of the TCO films does not degrade after the growth of NRAs and the nanorods are highly crystalline. As the growth duration increases from 3 to 8 min, the diffuse transmittance of the samples decreases, while the total transmittance and UV emission enhance. Two possible nanorod self-attraction models were proposed to interpret the phenomena in the sample with 9-min growth duration. The sample with 8-min growth duration has the highest total transmittance of 87.0%, proper density about 75 μm−2, diameter about 26 nm, and length about 500 nm, indicating that it can be used in hybrid solar cells. 相似文献
7.
《Ceramics International》2016,42(12):13819-13823
Bright green luminescence is achieved from undoped ZnO films prepared by the reaction of oxygen and zinc powder. The green emission band is considered to be mainly due to the singly ionized oxygen vacancies. Temperature dependence of exciton transitions in the undoped ZnO films has been investigated in the range from 10 to 270 K. The PL spectrum at 10 K is dominated by neutral donor-bound exciton (D°X) emissions. The dominant emission centered at about 3.303 eV at above 45 K can be attributed to the localized bound exciton (LBX) transitions related to basal plane stacking faults. LBX transitions can survive up to near room temperature due to the LBX binding energy of 68 meV. 相似文献
8.
《Ceramics International》2017,43(11):8488-8496
In this paper, the structural, optical and magnetic properties of pure ZnO and Fe/Co co-doped ZnO nanoparticles are presented. Rietveld refinement of XRD pattern revealed the single phase wurtzite structure for prepared samples. FTIR study confirmed the formation of tetrahedral coordination between zinc and oxygen ions. SEM and TEM techniques were used to examine the morphology of samples. The absorption spectra showed the decrease in optical energy band gap with Fe/Co co-doping in ZnO. PL spectra demonstrated five peaks correspond to the ultraviolet region, violet, violet-blue, blue-green and green in the visible region. Emission peak in the UV region is attributed to near band-edge excitonic emission. Other four emission peaks in PL spectra are related to different defect states. M-H curve showed room temperature ferromagnetic (RTFM) behaviour of doped ZnO sample. This paper enhances the understanding of structural, optical and magnetic properties of Fe/Co co-doped ZnO nanocrystals for application in spintronics, solar cells, and ceramics. 相似文献
9.
《Ceramics International》2016,42(5):5921-5931
Zn0.98Mn0.02O and Zn0.98−xMn0.02SnxO (x=2% and 4%) nanoparticles have been successfully synthesized via sol–gel method. X-ray diffraction (XRD) confirmed the hexagonal wurtzite structure of the samples and also successful Sn doping without any secondary phases. The microstructure of ZnMnO was significantly altered where the morphology was turned from mixed plate-like structure to spherical like structure by Sn substitution which was confirmed by electron microscope images. The energy dispersive X-ray (EDX) analysis confirmed the presence of Sn and Mn in Zn–O nanoparticles. The observed narrowing of energy gap (red shift) from 3.85 eV (Sn=0%) to 3.66 eV (Sn=4%) was discussed based on size effect and generation of free carrier concentrations. The improved optical properties of Sn–Zn–Mn–O evidenced for developing opto-electronic devices with better conversion efficiency. The shift of lattice mode (position) around 527–548 cm−1 and the change in shape of the band demonstrated the presence of Sn in Zn–Mn–O. The decrease of UV emission intensity and increase of defect related blue and green emissions indicated the possible generation of white light sources and display devices. The superior magnetic property of Sn doped Zn0.98Mn0.02O was explained by the intrinsic exchange interaction between Zn/Mn/Sn ions through the defects induced by Sn. 相似文献
10.
Sumetha Suwanboon Pongsaton Amornpitoksuk Nantakan Muensit 《Ceramics International》2011,37(7):2247-2253
Nanocrystalline ZnO powders were prepared from cetyltrimethylammonium bromide (CTAB)-modified NaOH, NH4OH and (CH2)6N4 solutions. The calcined ZnO powders exhibited a hexagonal structure without any secondary phase. Different shapes of ZnO powders were formed depending on CTAB concentration and type of precipitating agent. As (CH2)6N4 solution was used, rod-like ZnO structure was changed to a spherical shape when CTAB concentration was increased. The widest Eg value of approximately 3.23 eV was obtained from the sample containing the lowest defect concentration. The decolorization efficiency was higher than 90% after irradiating for 90 min and the sample with higher Eg value showed higher decolorization efficiency. 相似文献
11.
Abdolhossein Sa΄aedi Ramin Yousefi Farid Jamali-Sheini Mohsen Cheraghizade A. Khorsand Zak Nay Ming Huang 《Ceramics International》2014
Undoped and group-I elements doped ZnO nanowires were synthesized using a thermal evaporation method. Field emission scanning electron microscopy (FESEM) results showed that, the undoped ZnO nanowires were ultra-long with uniform diameters. On the other hand, the length of the doped ZnO nanowires was in the range of some hundred of nanometers. X-ray diffraction (XRD) patterns clearly indicated hexagonal structures for all of the products. X-ray photoelectron spectroscopy (XPS) studies confirmed the oxidation states of Li, Na, K, in the ZnO lattice. An asymmetric O 1s peak indicated the presence of oxygen in an oxide layer. The effect of doping on the optical band-gap and crystalline quality was also investigated using photoluminescence (PL), UV–vis, and Raman spectrometers. The Raman spectra of the products indicated a strong E2 (high) peak. The PL spectra exhibited a strong peak in the ultraviolet (UV) region of the electromagnetic spectrum for all of the ZnO nanowires. The UV peak of the doped ZnO nanowires was red-shifted compared to the undoped ZnO nanowires. In addition, the UV–vis spectra of the samples showed similar results compared to the PL results. 相似文献
12.
Structural and optical properties of Al doped ZnO nanoparticles prepared by the thermal decomposition method are presented. X-ray diffraction studies confirmed the substitution of Al on Zn sites without changing the hexagonal structure of ZnO. Also, lattice parameters, the crystallite size and other physical parameters such as strain, stress and energy density were calculated from various modified forms of W–H equation and their variation with the doping of Al is discussed. A blue shift in the energy band gap attributed to increase in carrier concentration (Burstein Moss Effect) is observed by absorption spectra. Photoluminescence studies show a strong and dominant peak corresponding to the near band edge emission in ultraviolet range and a broad band in the range 420–520 nm corresponding to defects and oxygen vacancies. Phonon modes were studied by FTIR measurements. The tunability of the band gap of ZnO nanoparticles could eventually be useful for potential optoelectronic applications. 相似文献
13.
《Ceramics International》2016,42(13):14452-14455
The effect of the thermal annealing temperature was investigated on ZnO tetrapods grown by a thermal evaporation method. The ZnO tetrapods were synthesized by thermal evaporation of Zn powder in air. The annealing was done in an oxygen gas environment at temperatures ranging from 400 to 1000 °C for 1 h. As the annealing temperature increased from 400 °C to 800 °C, the morphology of the tetrapod remained unchanged; however, the size of the tetrapods increased. With a further increase in the annealing temperature from 800 °C to 1000 °C, the ZnO tetrapod changed drastically to nanoneedles. As-grown and annealed samples had an identical crystal structure, which was a wurtzite structure. A strong and sharp ultraviolet emission at 380 nm was observed for the 600 °C –annealed sample indicating the high crystalline quality. The ultraviolet emission intensity decreased abruptly for the samples annealed at 800 °C and 1000 °C, which exhibits the degradation in crystallinity. 相似文献
14.
Zinc oxide (ZnO) nanostructures of various morphologies were prepared using a microwave-assisted aqueous solution method. Herein, a comparative study between three different morphologies of ZnO nanostructures, namely nanoparticles (NPs), nanoflowers (NFs) and nanorods (NRs) has been reviewed and presented. The morphologies of the prepared powders have been studied using field effect scanning electron microscopy (FESEM). X-ray diffraction (XRD) results prove that ZnO nanorods have biggest crystallite size compared with nanoflowers and nanoparticles. The texture coefficient (Tc) of three morphologies has been calculated. The Tc changed with varying morphology. A comparative study of surfaces of NPs, NFs and NRs were investigated using X-ray photoelectron spectroscopy (XPS). The possible growth mechanisms of ZnO NPs, NFs and NRs have been described. The optical properties of the ZnO nanostructures of various morphologies have been investigated and showed that the biggest crystallite size of ZnO nanostructures has lowest band gap energy. The obtained results are in agreement with experimental and theoretical data of other researchers. 相似文献
15.
Morphology and optical analysis of defect levels in ultrasonically-sprayed zinc tin oxide thin films
《Ceramics International》2020,46(9):13151-13158
We prepared zinc-doped tin oxide (ZTO) films of various concentrations of zinc using the ultrasonic spray pyrolysis technique. The surface morphology and roughness were studied by Field-Emission Scanning Electron Microscope and atomic force microscope. Systematic x-ray diffraction (XRD) measurements revealed that all films have tetragonal rutile structure and mixed preferred orientation along the (200) and (110) planes. The proper substitution of zinc ions into tin sites and the absence of any secondary phase in the films were proved by the analysis of the x-ray photoelectron spectroscopy (XPS) measurements. The detailed analysis of the optical absorption spectra revealed the presence of four direct optical transitions within the energy range 3.8–5.1 eV. The defect levels of the neutral and double-ionized oxygen vacancy states were determined within the energy bandgap by the comprehensive analysis of the photoluminescence spectra. The existence of high concentration of oxygen vacancies is supported by the XPS results. The observed transitions were used to sketch the band diagram of ZTO films. 相似文献
16.
Ramin Yousefi Farid Jamali-Sheini Abdolhossain Sa’aedi A. Khorsand Zak Mohsen Cheraghizade Siamak Pilban-Jahromi Nay Ming Huang 《Ceramics International》2013,39(8):9115-9119
Undoped and Pb-doped ZnO nanowires with different lead concentrations were grown on Si(111) substrates using a thermal evaporation method. Scanning electron microscopy (SEM) results showed that, the undoped ZnO nanowires were well aligned with uniform diameters and lengths. On the other hand, the Pb-doped ZnO nanowires were tapered and not aligned in a unique direction. X-ray diffraction patterns and Raman measurements clearly indicated hexagonal structures for all of the products. In addition, the Raman results demonstrated that the Pb-doped ZnO nanowires had a lower crystalline quality than the undoped ZnO nanowires. Photoluminescence (PL) studies also confirmed the Raman results and showed a lower optical property for the Pb-doped ZnO nanowires compared to the undoped ZnO nanowires. Moreover, the PL results showed a smaller band-gap for the Pb-doped ZnO nanowires compared to the undoped ZnO. 相似文献
17.
《Ceramics International》2016,42(13):14581-14586
Aluminum and gallium co-doped ZnO (AGZO) thin films were grown by simple, flexible and cost-effective spray pyrolysis method on glass substrates at a temperature of 230 °C. Effects of equal co-doping with aluminum (Al) and gallium (Ga) on structural, optical and electrical properties were investigated by X-ray diffraction (XRD), UV–vis–NIR spectrophotometry and Current–Voltage (I–V) measurements, respectively. XRD patterns showed a successful growth with high quality polycrystalline films on glass substrates. The predominant orientation of the films is (002) at dopant concentrations ≤2 at% and (101) at higher dopant concentrations. Incorporation of Al and Ga to the ZnO crystal structure decreased the crystallite size and increased residual stress of the thin films. All films were highly transparent in the visible region with average transmittance of 80%. Increasing doping concentrations increased the optical band gap, from 3.12 to 3.30 eV. A blue shift of the optical band gap was observed from 400 nm to 380 nm with increase in equal co-doping. Co-doping improved the electrical conductivity of ZnO thin films. It has been found from the electrical measurements that films with dopant concentration of 2 at% have lowest resistivity of 1.621×10−4 Ω cm. 相似文献
18.
RF plasma processing technique was used to prepare Al-doped (up to 4 at%) ZnO nanopowders. The as-prepared powders were subsequently hot pressed to form sintered pellets. The temperature-dependent electrical and thermal properties of the sintered materials were measured from room temperature to 800 °C. All the doped samples showed metallic electrical conductivity and the overall thermoelectric performances were comparable to doped ZnO thermoelectric materials obtained by other nanoprocessing techniques. The results showed that RF plasma processing technique can be effectively used to produce doped nanopowders. The thermoelectric performance of the doped samples was discussed and related to the microstructure of the materials. 相似文献
19.
O. Bazta A. Urbieta J. Piqueras P. Fernández M. Addou J.J. Calvino A.B. Hungría 《Ceramics International》2019,45(6):6842-6852
This study reports on the deposition of highly transparent, n-type ZnO thin films on glass substrate at 450?°C using spray pyrolysis processing, with the simultaneous insertion of yttrium (Y) at different percentages (0, 2, 5, 7?at%) as a dopant. The effect of Y doping on the structure, morphology and optical properties of Y doped ZnO (ZnO:Y) was investigated for optoelectronic applications. The obtained thin films were characterized by means of X-ray diffraction, field-emission scanning electron microscopy (FESEM), UV–visible absorbance measurements, photoluminescence (PL) and cathodoluminescence (CL) spectroscopy. The as-prepared films exhibit well-defined hexagonal wurtzite structure grown along [002]. Field emission scanning electron microscope micrographs of the pure ZnO and ZnO:Y showed that the films acquired a dominance of hexagonal-like grains, the morphology was influenced by Y incorporation. All the films showed high transparency in the visible domain with an average transmittance of 83%. The band gap energy, Eg, increased from 3.12?eV to 3.18?eV by increasing the Y doping concentration up to 5?at% and then decreased to 3.15?eV for 7?at% Y content. The PL and CL measurements reveal a strong ultraviolet (UV) emission, suggesting that the as-prepared ZnO:Y thin films can potentially be used in optoelectronic devices. 相似文献
20.
Plate-like nanocrystalline NaV2O5 has been synthesized hydrothermally via a simple and elegant route. The morphology, the structure, the crystallinity and the composition of the samples were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, nitrogen adsorption/desorption isotherms and photoluminescence. Electrochemical measurements have revealed reversible redox behavior with doping/dedoping process corresponding to reversible cation intercalation/deintercalation into the crystal lattice of the nanoplates. This process is easier in propylene carbonate than in aqueous solvent and is easier for the small Li+ cation than larger ones K+. This is attributed to probable presence of two different tunnel cavities in the NaV2O5 lattice. 相似文献