首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Br-doped Li4Ti5O12 in the form of Li4Ti5O12−xBrx (0 ≤ x ≤ 0.3) compounds were successfully synthesized via solid state reaction. The structure and electrochemical properties of the spinel Li4Ti5O12−xBrx (0 ≤ x ≤ 0.3) materials were investigated. The Li4Ti5O12−xBrx (x = 0.2) presents the best discharge capacity among all the samples, and shows better reversibility and higher cyclic stability compared with pristine Li4Ti5O12, especially at high current rates. When the discharge rate was 0.5 C, the Li4Ti5O12−xBrx (x = 0.2) sample presented the excellent discharge capacity of 172 mAh g−1, which was very close to its theoretical capacity (175 mAh g−1), while that of the pristine Li4Ti5O12 was 123.2 mAh g−1 only.  相似文献   

2.
Upper and lower solubility limits in Ba6−3xSm8+2xTi18O54 tungsten bronze ceramics were determined by Rietveld refinement of XRD data combined with backscattered electron images, and the variation tendency of microwave dielectric characteristics was also investigated. The upper solubility limit was confirmed as x = 2/3, while the lower solubility limit was determined as 1/4 instead of the previously reported one x = 3/10. The dielectric constant of Ba6−3xSm8+2xTi18O54 ceramics decreases monotonically with increasing x, while the small temperature coefficient of resonant frequency with complex variation tendency is observed for the compositions 1/2 ≤ x ≤ 4/5. The Qf value increases at first, reaches the maximum around x = 2/3, and turns to decrease for x > 7/10.  相似文献   

3.
For (Ti1−xVx)2Ni (x = 0.05, 0.1, 0.15, 0.2 and 0.3) ribbons, synthesized by arc-melting and subsequent melt-spinning techniques, an icosahedral quasicrystalline phase was present, either in the amorphous matrix or together with the stable Ti2Ni-type phase. With increasing x values, the maximum discharge capacity of the alloy electrodes increased until reached 271.3 mAh/g when x = 0.3. The cycling capacity retention rates for these electrodes were approximately 80% after a preliminary test of 30 consecutive cycles of charging and discharging. Ti1.7V0.3Ni alloy electrode displayed the best high-rate discharge ability of 82.7% at the discharge current density of 240 mA/g.  相似文献   

4.
The effects of substitution of (Zn1/3Nb2/3) for Ti on the sintering behavior and microwave dielectric properties of Ba3Ti4−x(Zn1/3Nb2/3)xNb4O21 (0 ≤ x ≤ 4) ceramics have been investigated. The dielectric constant (?r) and the temperature coefficient of the resonant frequency (τf) of Ba3Ti4−x(Zn1/3Nb2/3)xNb4O21 ceramics decreased with increasing x. However, the Q × f values enhanced with the substitution of (Zn1/3Nb2/3) for Ti. It was found that a small amount of MnCO3-CuO (MC) and ZnO-B2O3-SiO2 (ZBS) glass additives to Ba3Ti4−x(Zn1/3Nb2/3)xNb4O21 (x = 2) ceramics lowered the sintering temperature from 1250 to 900 °C. And Ba3Ti4−x(Zn1/3Nb2/3)xNb4O21 (x = 2) ceramics with 1 wt% MC and 1 wt% ZBS sintered at 900 °C for 2 h showed excellent dielectric properties: ?r = 53, Q × f = 14,600 GHz, τf = 6 ppm/°C. Moreover, it has a chemical compatibility with silver, which made it as a promising material for low temperature co-fired ceramics technology application.  相似文献   

5.
L.X He  H.I Yoo 《Electrochimica acta》2003,48(10):1357-1366
Effect on the ionic conductivity of B-site ion (M) substitution in (Li3xLa2/3−x)1+y/2MyTi1−yO3 (M=Al, Cr) has been investigated. It has been found that partial substitution of smaller Al3+ for Ti4+ is effective to enhance the ionic conductivity of Li3xLa2/3−xTiO3. At 300 K, the maximum bulk conductivity of (1.58±0.01)×10−3 S cm−1 is observed from the composition of (Li0.39La0.54)1−y/2AlyTi1−yO3 with y=0.02 (x=0.13), that is the highest yet reported for known perovskite solutions at room temperature. The conductivity enhancement is interpreted as being due to the substitution-induced bond-strength change rather than due to bottleneck size change for Li migration, TiO6-octahedron tilting or A-site cation ordering.  相似文献   

6.
The temperature dependences of the piezoelectric properties of (Bi4−yNdy)1−(x/12)(Ti3−xVx)O12 [BNTV-x, y (x = 0.01, y = 0.00–1.00)] were investigated for environmentally friendly lead-free piezoelectric ceramic resonators with low-temperature coefficients of resonance frequency, TC-f. The |TC-f| in the (33) mode improved with increasing concentration of modified Nd ions, y, and exhibited the smallest |TC-f| value of 77.4 ppm/°C at y = 0.75 (BNTV-0.75). The |TC-f| in the other vibration mode (t), was also investigated for the BNTV-0.75 ceramic, and a smaller value of 42 ppm/°C was obtained. The (t) mode of the BNTV-0.75 ceramic showed excellent piezoelectric properties: Qm = 4200, Qe max = 31 and TC-f = −49.8 ppm/°C. These properties are very similar to those of commercialized hard PZT ceramics for resonator applications. The BNTV-0.75 ceramic seems to be a superior candidate material for lead-free piezoelectric applications of ceramic resonators.  相似文献   

7.
In this paper effects of Ca and Mg substitution on oxygen sensing properties of hot spot based Eu123 rods are reported. Eu1−xCaxBa2Cu3O7−δ (x=0.2–0.5) and Eu1−yMgyBa2Cu3O7−δ (y=0.2–0.5) ceramics were synthesized from oxide powders using the standard solid state method and fabricated into short rods. For Ca-substituted rods, after appearance of a visible hot spot, a constant current plateau in IV curve was formed. The output current response of the rod in periodically changing pO2 between 20% and 100% showed improved stability and reproducibility for x=0.4 compared to x=0.2. Improved oxygen absorption and desorption time was observed for x=0.4 compared to previously reported unsubstituted rod. On the other hand, for Mg-substituted rods the IV behavior after formation of hot spot showed a negative slope. Faster absorption time of 3.0 s and desorption time of 6.9 s were observed for y=0.4 compared to y=0.2. The improved output current stability, reproducibility and response time is suggested to be due to changes in oxygen activation energy and increased hole concentration as a result of Ca2+/Mg2+substitutions. The Mg-substituted rods showed better performance compared to Ca-substituted rods possibly due to higher porosity and vacancy concentration.  相似文献   

8.
This study reports on the synthesis of ternary semiconductor (BixSb1−x)2Te3 thin films on Au(1 1 1) using a practical electrochemical method, based on the simultaneous underpotential deposition (UPD) of Bi, Sb and Te from the same solution containing Bi3+, SbO+, and HTeO2+ at a constant potential. The thin films are characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS) and reflection absorption-FTIR (RA-FTIR) to determine structural, morphological, compositional and optic properties. The ternary thin films of (BixSb1−x)2Te3 with various compositions (0.0 ≤ x ≤ 1.0) are highly crystalline and have a kinetically preferred orientation at (0 1 5) for hexagonal crystal structure. AFM images show uniform morphology with hexagonal-shaped crystals deposited over the entire gold substrate. The structure and composition analyses reveal that the thin films are pure phase with corresponding atomic ratios. The optical studies show that the band gap of (BixSb1−x)2Te3 thin films could be tuned from 0.17 eV to 0.29 eV as a function of composition.  相似文献   

9.
(1 − x)Pb(Sn1−yTiy)O3-xPb(Mg1/3Nb2/3)O3 (x = 0.1-0.4, y = 0.45-0.65) ternary system was prepared using two-step columbite precursor method. Phase structure of the synthesized ceramics was studied by using X-ray powder diffraction and the morphotropic phase boundary (MPB) curve of the ternary system was confirmed. The isothermal map of Curie temperature (TC) in the phase diagram was obtained based on the dielectric-temperature measurements. The coercive field EC and internal bias field Ei were found to increase with increasing PT content, while decrease with increasing PMN content. The optimum properties were achieved in the MPB composition 0.8Pb(Sn0.45Ti0.55)O3-0.2Pb(Mg1/3Nb2/3)O3, with dielectric permittivity ?r, piezoelectric coefficient d33, planar electromechanical coupling kp, mechanical quality factor Qm and TC of being on the order of 3040, 530pC/N, 55.5%, 320 and 190 °C, respectively, exhibiting potential usage for high power application.  相似文献   

10.
In this study, MgxM2 − xP2O7 (M = Cu, Ni; 0 ≤ x ≤ 2) and Mg3 − yNiy(PO4)2 (0 ≤ y ≤ 3) compositions were synthesized by the chemical coprecipitation method and characterized by X-ray diffraction, UV-vis-NIR spectroscopy and CIE L* a* b* (Commission Internationale de l’Eclairage L* a* b*) parameters measurements.Solid solutions with α-Cu2P2O7 and α-Ni2P2O7 structures and solid solutions with Ni3(PO4)2 structure were obtained from diphosphate and orthophosphate compositions respectively. Isostructurality of α-Ni2P2O7 and α-Mg2P2O7 structures enlarges the compositional range of solid solution formation respect to the MgxCu2 − xP2O7 solid solutions one.The CIE L* a* b* parameters in MgxNi2 − xP2O7 samples were obtained comparable with these parameters in others yellow materials suitable for ceramic pigments. Mg0.5Ni1.5P2O7 composition fired at 800 °C or 1000 °C is the optimal composition to obtain yellow materials with α-diphosphate structure in conditions of this study.  相似文献   

11.
The kinetics of the oxygen reduction reaction (ORR) were examined on a series of Pt100−xyNixPdy ternary alloys. Films were produced by electrodeposition that involved a combination of underpotential and overpotential reactions. For Pt-rich Pt100−xyNixPdy alloy films (x < 0.65) Ni co-deposition occurred at underpotentials while for Ni-rich films (x > 0.65) deposition proceeded at overpotentials. Rotating disk electrode (RDE) measurements of the ORR kinetics on Ni-rich Pt100−xyNixPdy thin films revealed up to ∼6.5-fold enhancement of the catalytic activity relative to Pt films with the same Pt mass loading. More than half of the electrocatalytic gain may be attributed to surface area expansion due to Ni dealloying. Surface area normalization based on the Hupd charge reduced the enhancement factor to a value less than 2. The most active ternary alloy film for ORR was Pt25Ni73Pd2. Comparison of the ORR on Pt, Pt20Ni80, Pt25Ni73Pd2 thin films indicate that the binary alloy is the most active with a Hupd normalized ORR enhancement factor of up to 3.0 compared to 1.6 for the ternary alloy.  相似文献   

12.
The red-emitting (Y1−xGdx)0.94Eu0.06VO4 (0 ≤ x ≤ 1.0) phosphors were synthesized by ultrasonic spray pyrolysis. The (Y1−xGdx)0.94Eu0.06VO4 (0 ≤ x ≤ 1.0) phosphors had the tetragonal xenotime structure with a space group of I41/amd (1 4 1). The calculated crystallite sizes of the annealed phosphors ranged from 58 to 68 nm. In this study, we discussed the photoluminescence properties of the (Y1−xGdx)0.94Eu0.06VO4 phosphors under VUV excitation, depending on Gd content. The emission intensity of the (Y1−xGdx)0.94Eu0.06VO4 phosphors increased with increasing Gd content up to x = 0.5, and then decreased with a further increase in Gd content. The purest red color was obtained for the (Y0.5Gd0.5)0.94Eu0.06VO4 phosphors.  相似文献   

13.
Spinel-type ternary ferrites with composition NiFe2−xCrxO4 (0 ≤ x ≤ 1) were synthesized by a precipitation method and their physicochemical and electrocatalytic properties have been investigated using IR, XRD, BET surface area, XPS, impedance and Tafel polarization techniques. The study indicated that substitution of Cr from 0.2 to 1.0 mol in the spinel matrix increased the apparent electrocatalytic activity of the base oxide towards the O2 evolution reaction in 1 M KOH at 25 °C. The apparent electrocatalytic activity of the oxide with 0.8-1.0 mol Cr was found to be the greatest among the present series of oxides investigated. It is noteworthy that the electrocatalytic activity of the oxide with x = 0.8-1.0 was also greater than those of other spinel/perovskite O2 evolving electrocatalysts reported in literature.  相似文献   

14.
Ca–Ni co-substituted samples of nanocrystalline spinel ferrites with chemical formula Mg1−xCaxNiyFe2−y O4 (x=0.0–0.6, y=0.0–1.2) were synthesized by the micro-emulsion method and were annealed at 700 °C for 7 h. The synthesized samples were characterized by x-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, vibrating sample magnetometry (VSM) and dielectric measurements. The XRD and FTIR analysis reveals that single phase samples can be achieved by substituting Ca and Ni ions at Mg and Fe sites respectively in cubic spinel nano-ferrites. The crystallite size of the synthesized samples was found in the range 29–45 nm. The saturation magnetization (Ms) increases from 9.84 to 24.99 emu/g up to x=0.2, y=0.4 and then decreases, while the coercivity (Hc) increases continuously from 94 to 153 Oe with the increase in dopants concentration. The dielectric properties of these nano materials were also studied at room temperature in the frequency range 100 MHz to 3 GHz. The dielectric parameters were found to decrease with the increased Ca–Ni concentration. Further the peaking behavior was observed beyond 1.5 GHz. The frequency dependent dielectric properties of all the samples have been explained qualitatively on the basis of the Maxwell–Wagner two-layer model according to Koop's phenomenological theory. The enhanced magnetic parameters and reduced dielectric properties make the synthesized materials suitable for switching and high frequency applications, respectively.  相似文献   

15.
Li[Co1−zAlz]O2 (0 ≤ z ≤ 0.5) samples were prepared by co-precipitation and solid-state methods. The lattice constants varied smoothly with z for the co-precipitated samples but deviated for the solid-state samples above z = 0.2. The solid-state method may not produce materials with a uniform cation distribution when the aluminum content is large or when the duration of heating is too brief. Non-stoichiometric Lix[Co0.9Al0.1]O2 samples were synthesized by the co-precipitation method at various nominal compositions x = Li/(Co + Al) = 0.95, 1.0, 1.1, 1.2, 1.3. XRD patterns of the Lix[Co0.9Al0.1]O2 samples suggest the solid solution limit is between Li/(Co + Al) = 1.1 and 1.2. Electrochemical studies of the Li[Co1−zAlz]O2 samples were used to measure the rate of capacity reduction with Al content, found to be about −250 ± 30 (mAh/g)/(z = 1). Literature work on Li[Ni1/3Mn1/3Co1/3−zAlz]O2, Li[Ni1−zAlz]O2 and Li[Mn2−yAly]O4 demonstrates the same rate of capacity reduction with Al/(Al + M) ratio. These studies serve as baseline characterization of samples to be used to determine the impact of Al content on the thermal stability of delithiated Li[Co1−zAlz]O2 in electrolyte.  相似文献   

16.
The electrochemical behaviors of Bi(III), Te(IV), Sb(III) and their mixtures in DMSO solutions were investigated using cyclic voltammetry and linear sweep voltammetry measurements. On this basis, BixSb2−xTey film thermoelectric materials were prepared by potentiodynamic electrodeposition technique from mixed DMSO solution, and the compositions, structures, morphologies as well as the thermoelectric properties of the deposited films were also analyzed. The results show that BixSb2−xTey compound can be prepared in a very wide potential range by potentiodynamic electrodeposition technique in the mixed DMSO solutions. After anneal treatment, the deposited film prepared in the potential range of −200 to −400 mV shows the highest Seebeck coefficient (185 μV/K), the lowest resistivity (3.34 × 10−5 Ω m), the smoothest surface, the most compact structure and processes the stoichiometry (Bi0.49Sb1.53Te2.98) approaching to the Bi0.5Sb1.5Te3 ideal material most. This Bi0.49Sb1.53Te2.98 film is a kind of nanocrystalline material and (0 1 5) crystal plane is its preferred orientation.  相似文献   

17.
In this paper a new pink vanadium doped calcium titanate Ca(VxTi1−x)O3 ceramic pigment in conventional ceramic glazes is obtained by ceramic route and characterized. The limit of solid solution is near by x = 0.2, higher amounts of vanadium crystallizes Ca2V2O7 which dilute the real amount of saturated Ca(VxTi1−x)O3 solid solution and diminish the intensity of colour. The unit cell parameter measurements of Ca(VxTi1−x)O3 agrees with the substitution of Ti4+ by V5+ that is associated to a V5+-O charge transfer at 420 nm on UV-vis-NIR spectra of 5% glazed samples that explain the pink colour obtained. In order to avoid the limitation due to the suppressing of oxygen vacancies by high valence cation V5+ substitution in a Ti4+ site of CaTiO3 perovskite for to preserve the charge neutrality of the lattice; Fe3+ and V5+ codoped samples Ca(FexVxTi1−2x)O3x = 0.1, 0.2 and 0.3 were prepared and show a brown colour fired 1000 °C, but 5% glazed do not produce colour indicating that iron codoping inhibits the pigmenting capacity of vanadium doped CaTiO3 perovskite.  相似文献   

18.
(Nd1−xGdx)2(Ce1−xZrx)2O7 (0 ≤ x ≤ 1.0) powders with an average particle size of 100 nm were synthesized with chemical-coprecipitation and calcination method, and were characterized by X-ray diffractometry and scanning electron microscopy. The sintering behaviour of (Nd1−xGdx)2(Ce1−xZrx)2O7 powders was studied by pressureless sintering at 1600–1700 °C for 10 h in air. The relative densities of (Nd1−xGdx)2(Ce1−xZrx)2O7 solid solutions increase with increasing the sintering temperature, and gradually decrease with increasing the content of neodymium and cerium at identical temperature levels. (Nd1−xGdx)2(Ce1−xZrx)2O7 solid solutions have a single phase of defect fluorite-type structure among all the composition combinations studied. The lattice parameters of (Nd1−xGdx)2(Ce1−xZrx)2O7 solid solutions agree well with the Vegard's rule.  相似文献   

19.
The solid solutions LiCoO2-LiNi1/2Mn1/2O2-Li2MnO3 with higher Mn content have been prepared by a spray drying method between 750 and 950 °C and their electrochemical performances have also been characterized. The effects of the Li content on the structure and electrochemical performance of the samples have been studied. It was found that their lattice parameters a, c and V increase with the increase in Ni content and the decrease in Co content. The solid solutions xLiCoO2-yLiNi1/2Mn1/2O2-(1−xy)Li2MnO3 with x = 0.18, 0.27 and y = 0.2 have the largest discharge capacity, which is more than 200 mAh/g in the voltages of 3.0-4.6 V. It is believed that the optimum Co content x in xLiCoO2-yLiNi1/2Mn1/2O2-(1−xy)Li2MnO3 is between 0.2 and 0.3 in the charge-discharge voltage range of 3.0-4.6 V. The solid solutions xLiCoO2-yLiNi1/2Mn1/2O2-(1−xy)Li2MnO3 with x = 0.18-0.36 and y = 0.2 have the excellent cycling performance and the capacity retention attains to almost 100% after 50 cycles. Moreover, it is found that the discharge capacity gradually increases with the increment of cycle number especially in the initial 10 cycles. XRD showed that the layered structure has been kept all the time in 20 cycles, which is perhaps the reason why the sample has the excellent cycling performance.  相似文献   

20.
Li4AlxTi5−xFyO12−y compounds were prepared by a solid-state reaction method. Phase analyses demonstrated that both Al3+ and F ions entered the structure of spinel-type Li4Ti5O12. Charge-discharge cycling results at a constant current density of 0.15 mA cm−2 between the cut-off voltages of 2.5 and 0.5 V showed that the Al3+ and F substitutions improved the first total discharge capacity of Li4Ti5O12. However, Al3+ substitution greatly increased the reversible capacity and cycling stability of Li4Ti5O12 while F substitution decreased its reversible capacity and cycling stability slightly. The electrochemical performance of the Al3+-F-co-substituted specimen was better than the F-substituted one but worse than the Al3+-substituted one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号