首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Lead free piezoelectric Bi0.5(Na0.5K0.5)0.5TiO3 (pure and 1 wt.%, 2 wt.%, 4 wt.% Sb-doped) ceramics were synthesized away from its MPB. The crystalline nature of the BNKT ceramic was studied by XRD and SEM. Depolarization temperature (Td) and transition temperature (Tc) were observed through phase transitions in dielectric studies which were found to increase after Sb-doping, thus increasing its usable temperature range. In the study of relaxation behavior, the activation energy for relaxation was found to be 0.33, 0.43, 0.57 and 0.56 eV for pure and Sb-doped samples, respectively. All samples were found to exhibit normal Curie-Weiss law above their Tc. Doping of Sb was found to restrain the diffused character of the pure sample. In P-E loop, Sb-doping was found to increase the ferroelectric properties.Pure and Sb-doped BNKT ceramics exhibited high values of piezoelectric charge coefficient (d33) as 115, 121, 129 and 100 pC/N, respectively.  相似文献   

3.
Ta-doping K0.5Na0.5Nb1−xTaxO3 (x = 0.1, 0.2, 0.3, 0.4) powder was synthesized by hydrothermal approach and its ceramics were prepared after sintering and polarizing treatment in this work. The K0.5Na0.5Nb0.7Ta0.3O3 ceramics near morphotropic phase boundary (MPB), which exhibited optimum piezoelectric properties of d33 = 210 pC/N and good electromechanical coupling factors of Kp = 0.3. The domain structure has been observed from TEM images which indicates that the K0.5Na0.5Nb0.7Ta0.3O3 ceramics have good piezoelectric and ferroelectric properties for it is near the MPB.  相似文献   

4.
Bi0.5(Na0.5K0.5)0.5TiO3 + y wt.% Nb (y = 0-1) piezoelectric ceramics were synthesized by solid state reaction. The effect of varying Nb concentration on various properties of BNKT ceramic has been investigated in detail. The effect of Nb-doping on dielectric and ferroelectric property has been presented. An increase in its depolarization temperature and Curie temperature with Nb concentration was observed. The electrical properties of pure and Nb-doped BNKT ceramic over a wide range of frequencies (20 Hz to 2 MHz) and temperature (30-430 °C) were studied using impedance spectroscopic technique.  相似文献   

5.
Piezoelectric energy harvesting is the most widely investigated technology for renewable energy applications. In this work, (1-x)(Na0.5K0.5)NbO3-xLiSbO3 piezoelectric ceramics were prepared through conventional mixed oxide fabrication methods with different sintering temperatures. Although the (Na0.5K0.5)NbO3 piezoelectric material is representative among the lead-free ceramics, it is difficult to densify by typical sintering techniques owing to its easy evaporation properties of potassium (K+) and sodium ion (Na+). Hence, lithium (Li+) and antimony ion (Sb5+) were used for the partial substitution of (Na0.5K0.5)NbO3. With the optimized sintering temperature, Li+ and Sb5+ are expected to be crucial in increasing the density and enhance the piezoelectric and ferroelectric properties. In this study, the phase, microstructure, and dielectric and electrical properties of (1-x)(Na0.5K0.5)NbO3-xLiSbO3 ceramics depending on the sintering temperature is examined by employing X-ray diffraction, field emission scanning electron microscopy, impedance analyzer, and mechanical force system for energy harvesting.  相似文献   

6.
Lead-free piezoelectric (1 ? x)Bi0.5(Na0.78K0.22)0.5TiO3xK0.5Na0.5NbO3 (BNKT–xKNN, x = 0–0.10) ceramics were synthesized using a conventional, solid-state reaction method. The effect of KNN addition on BNKT ceramics was investigated through X-ray diffraction (XRD), dielectric, ferroelectric and electric field-induced strain characterizations. XRD revealed a pure perovskite phase with tetragonal symmetry in the studied composition range. As the KNN content increased, the depolarization temperature (Td) as well as maximum dielectric constant (?m) decreased. The addition of KNN destabilized the ferroelectric order of BNKT ceramics exhibiting a pinched-type hysteresis loop with low remnant polarization (11 μC/cm2) and small piezoelectric constant (27 pC/N) at 3 mol% KNN. As a result, at x = 0.03 a significant enhancement of 0.22% was observed in the electric field-induced strain, which corresponds to a normalized strain (Smax/Emax) of ~434 pm/V. This enhancement is attributed to the coexistence of ferroelectric and non-polar phases at room temperature.  相似文献   

7.
Novel ((Bi0.5Na0.5)0.94Ba0.06)1-x(K0.5Nd0.5)xTiO3(x = 0.0, 0.02, 0.04, 0.06) lead-free ceramics (BNBT–xKN) were prepared by the solid-state reaction method. The effects of A-site (K0.5Nd0.5)2+ complex-ion substitution on their phase structure, dielectric, piezoelectric, and electromechanical properties were studied. The X-ray diffraction results indicate that all compositions are located in the morphotropic phase boundary (MPB) region where the tetragonal phase coexists with the rhombohedral phase. In addition, as the KN content increases, the ferroelectric order transform to relaxor order, which is characterized by a degeneration of maximum polarization, remnant polarization and correspondingly adjusts the ferroelectric-relaxor transformation temperature (TF-R) to room temperature. Interestingly, the disruption of ferroelectric phase caused a significant improvement of strains. A maximum strain of ~ 0.52% corresponding to normalized strain of ~ 612 pm/V appeared at 85 kv/cm for the x = 0.04 composition. Particularly, the composition of x = 0.04 exhibited high electrostrains of temperature insensitivity, which remained above 0.4% and kept within 10% from ambient temperature up to 110 °C. It can be ascribed to the coexistence of non-ergodic and ergodic states in the relaxor region. As a result, the systematic investigations on the BNBT–xKN ceramics can benefit the developments of temperature-insensitive “on-off” actuators.  相似文献   

8.
The xBi(Zn2/3Nb1/3)O3–(1?x)(K0.5Na0.5)NbO3 (abbreviated as xBZN–(1?x)KNN) ceramics have been synthesized using the conventional solid‐state sintering method. The phase structure, dielectric properties and “relaxorlike” behavior of the ceramics were investigated. The 0.03BZN–0.97KNN ceramics show a broad and stable permittivity maximum near 2000 and lower dielectric loss (≤5%) at a broad temperature usage range (100°C–400°C) and the capacitance variation (ΔC/C150°C) is maintained smaller than ±15%. The 0.03BZN–0.97KNN ceramics only possess the diffuse phase transition and no frequency dispersion of dielectric permittivity, which indicates that 0.03BZN–0.97KNN ceramics is a high temperature “relaxorlike” ferroelectric ceramics. These results indicate that 0.03BZN–0.97KNN ceramics are excellent promising candidates for preparing high‐temperature multilayer ceramics capacitors.  相似文献   

9.
A small quantity of Eu3+ ions were doped in the lead‐free ferroelectric K0.5Na0.5NbO3xLiNbO3 (KNN–xLN, 0 ≤ x ≤ 0.08) ceramics to investigate the NbO6 octahedral distortion induced by the increasing LN content. In addition, the phase structure, ferroelectric, and photoluminescence properties of K0.5Na0.5NbO3xLiNbO3:0.006Eu3+ (KNN–xLN:0.006Eu3+) lead‐free piezoelectric ceramics were characterized. All the X‐ray diffraction, Raman spectra, dielectric constant vs temperature measurements and the photoluminescence of Eu3+ ions demonstrated that the prepared ceramics undergo a polymorphic phase transition (PPT, from orthorhombic to tetragonal phase transformation) with the rising LN content, and the PPT region locates at 0.05 ≤ x ≤ 0.06. The ferroelectric properties, Raman intensity ratios and photoluminescence intensity ratios show similar variations with the increasing LN content, all with a maximum value achieved at the PPT region. We believe that the close relationship among the ferroelectric properties, Raman intensity ratios, and photoluminescence intensity ratios is caused by the NbO6 octahedral distortion. The photoluminescence of Eu3+ ion was discussed basing on the crystal‐symmetry principle and Judd‐Ofelt theory.  相似文献   

10.
Er3+ doped K0.5Na0.5NbO3 (KNN) lead-free piezoelectric ceramics were synthesized by the solid-state reaction method. The upconversion emission properties of Er3+ doped KNN ceramics were investigated as a function of Er3+ concentration and incident pumping power intensity. Bright green (~555 nm) and red (670 nm) upconversion emission bands were obtained under 980 nm excitation at room temperature, which are attributed to (2H11/2, 4S3/2)→4I15/2 and 4F9/24I15/2 transitions, respectively. The upconversion emission intensity can be adjusted by changing Er3+ concentration, and the mechanism of upconversion processes involve not only a two-photon absorption but also a three-photon absorption. In addition to the admirable intrinsic piezoelectric properties of KNN, this kind of material may have potential application as a multifunctional device by integrating its upconversion and piezoelectric property.  相似文献   

11.
《Ceramics International》2022,48(7):9324-9329
(K,Na)NbO3 (KNN)-based ceramics have been proven to be formidable candidates among lead-free piezoelectric materials, yet poor reproducibility always hinders their progress. In the present study, the effects of low lithium substitution on the electrical properties and microstructure of (K0.5Na0.5)1-xLixNbO3 (KNLN) ceramics were investigated. All samples were synthesized by the sol-gel method. The Curie temperature (TC) of the ceramics shifted to higher temperature and gradually decreased the monoclinic-tetragonal (TM-T) phase transition. Li+ substitution had a prominent effect on the ferroelectric properties and improved the piezoelectric coefficient (d33) up to 181 pC/N. X-Ray Diffraction (XRD) studies and Field Emission Scanning Electron Microscopy (FESEM) images revealed an inevitable tetragonal tungsten bronze (TTB) secondary phase, which was formed during the preparation process. It was demonstrated that the volatilization of Li+ cations facilitated TTB growth. The coexistence of two different phase structures proved to enhance the KNN piezoelectric performance.  相似文献   

12.
A novel (1 − x)Bi0.5Na0.5TiO3-xKTaO3 system was characterized using X-ray powder diffraction, scanning electron microscopy, as well as dielectric and ferroelectric measurements. The results showed the formation of solid solutions across the whole concentration range; however, using a solid-state reaction method it was not possible to obtain single-phase ceramics. The secondary phases formed in the system were alkali-hexatitanate and -tetratantalate. The formation of the solid solutions initially starts with the formation of the Bi0.5Na0.5TiO3- and KTaO3-rich phases, which then react towards the nominal composition at higher temperatures. We observed that the structural and dielectric properties are strongly influenced by the heat-treatment conditions. Typical relaxor properties with a frequency dispersion of the dielectric maximum were obtained only after annealing at a higher temperature, which considerably improved the homogeneity of the perovskite phase. In accordance with the decreasing temperature of the permittivity maximum, ferroelectric measurements showed a changing of the properties from ferroelectric through relaxor to paraelectric with an increasing content of KTaO3.  相似文献   

13.
Eu-doped (Bi0.5Na0.5)0.94Ba0.06TiO3 (BNBT6-xEu, x=0.00–2.00 at%) lead-free piezoelectric ceramics have been synthesized by the solution combustion method. The effect of Eu doping concentration on the phase structure, microstructure and electrical properties of BNBT6 ceramics has been investigated. The XRD analysis confirms that the europium additive incorporates into the BNBT6 lattice and results in a phase transition from the coexistence of rhombohedral and tetragonal phases to a more symmetric pseudocubic phase. The SEM images indicate that the europium additive has little effect on the ceramic microstructure and the average grain size is about 2.0 μm. The electrical properties of BNBT6 ceramics can be improved by appropriate Eu doping. The 0.25 at% Eu doped BNBT6 ceramic presents excellent electrical properties: piezoelectric constant d33=149 pC/N, remnant polarization Pr=40.27 μC/cm2, coercive field Ec=2.95 kV/mm, dielectric constant εr=1658 and dissipation factor tan δ=0.0557 (10 kHz).  相似文献   

14.
CuO as a sintering additive was utilized to explore a low-temperature sintering of 0.92(Bi1/2Na1/2)TiO3-0.06BaTiO3-0.02(K0.5Na0.5)NbO3 lead-free piezoceramic which has shown a promise for actuator applications due to its large strain. The sintering temperature guaranteeing the relative density of greater than 98% is drastically decreased with CuO addition, and saturates at a temperature as low as ∼930 °C when the addition level exceeds ca. 1 mol.%. Two distinguished features induced by the addition of CuO were noted. Firstly, the initially existing two-phase mixture gradually evolves into a rhombohedral single phase with an extremely small non-cubic distortion. Secondly, a liquid phase induced by the addition of CuO causes an abnormal grain growth, which can be attributed to the grain boundary reentrant edge mechanism. Based on these two observations, it is concluded that the added CuO not only forms a liquid phase but also diffuses into the lattice. In the meantime, temperature dependent permittivity measurements both on unpoled and poled samples suggest that the phase stability of the system is greatly influenced by the addition of CuO. Polarization and strain hysteresis measurements relate the changes in the phase stability closely to the stabilization of ferroelectric order, as exemplified by a significant increase in both the remanent strain and polarization values. Electron paramagnetic resonance (EPR) spectroscopic analysis revealed that the stabilization of ferroelectric order originates from a significant amount of Cu2+ diffusing into the lattice on B-site. There, it acts as an acceptor and forms a defect dipole in association with a charge balancing oxygen vacancy.  相似文献   

15.
A route exploring the morphotropic phase boundaries (MPB) region in (Bi.5Na.5)TiO3-BaTiO3-(Bi.5K.5)TiO3 ternary system has been designed based on the phase diagram. X-ray diffraction (XRD) has been performed to determine the phases of the prepared samples. The dielectric, ferroelectric, and piezoelectric properties of [(1-x) 0.9363(Bi.5Na.5)TiO3–0.0637BaTiO3]-x(Bi.5K.5)TiO3 (BNKBT100x) ternary lead-free piezoelectric ceramics are investigated as the functions of x and sintering temperature. When x was varied from 0 to 0.11, the BNKBT100x ceramics show single perovskite structure sintered at 1130–1210?°C. These ceramics show large dielectric permittivity, small dielectric loss, and diffused phase transition behavior. Well-defined ferroelectric polarization-electric field (P-E) hysteresis loop and relative large piezoelectric and electromechanical coefficients are also found in these ceramics. When increasing x, the electrical performances first increase, then decrease. The same rule is found when varying the sintering temperature. The optimized composition and sintering temperature are finally obtained.  相似文献   

16.
The effects of sintering temperature and the addition of CuO on the microstructure and piezoelectric properties of 0.95(K0.5Na0.5)NbO3-0.05Li(Nb0.5Sb0.5)O3 were investigated. The KNN-5LNS ceramics doped with CuO were well sintered even at 940 °C. A small amount of Cu2+ was incorporated into the KNN-5LNS matrix ceramics and XRD patterns suggested that the Cu2+ ion could enter the A or B site of the perovskite unit cell and replace the Nb5+ or Li+ simultaneously. The study also showed that the introduction of CuO effectively reduced the sintering temperature and improved the electrical properties of KNN-5LNS. The high piezoelectric properties of d33 = 263 pC/N, kp = 0.42, Qm = 143 and tan δ = 0.024 were obtained from the 0.4 mol% CuO doped KNN-5LNS ceramics sintered at 980 °C for 2 h.  相似文献   

17.
(1−x)K0.50Na0.50NbO3xBa0.80Ca0.20ZrO3 [(1−x)KNN–xBCZ] lead-free ceramics were prepared by the conventional solid-state method, and the effect of BCZ content on their phase structure and piezoelectric properties was studied. A coexistence of rhombohedral–orthorhombic phases was identified in the range 0.04<x<0.08. With increasing the BCZ content, their grain size becomes smaller, and their Curie temperature gradually decreases. An optimum piezoelectric behavior of d33∼197 pC/N and kp∼40.6% was demonstrated in the ceramic with x=0.06 because of the coexistence of two phases. As a result, the introduction of BCZ could further improve piezoelectric properties of KNN ceramics.  相似文献   

18.
The effects of Ba(Mg1/3Nb2/3)O3 additives to lead-free (1-x)(Na0.5K0.5)NbO3-xBa(Mg1/3Nb2/3)O3 ceramics have been investigated. XRD patterns, SEM images and Raman spectra have been used to discuss phase structure transitions and microstructure. The dielectric behavior has been also investigated by using the empirical law, the Curie-Weiss law and the spin-glass model. Results show the diffused phase transition behavior to be enhanced by increasing Ba(Mg1/3Nb2/3)O3 addition and the dielectric behavior to be changed to the more short range order of relaxor ferroelectric. Barium and Magnesium cations are suggested to enter into the cation sites and induce the changes of lattice structure, microstructure, compositional fluctuation, cation disorder and correlation of neighboring cluster-sized moments.  相似文献   

19.
The pure and Mn-doped K0.5Na0.5NbO3 (KNN) films were deposited using solution-gelation method. The crystal structure, ferroelectric properties, spectral response and J-V performance of photovoltaic effect were systematically investigated. Both the ferroelectric and leakage properties are obviously enhanced for Mn-doped KNN films. A fascinating phenomenon is observed that the ferroelectric photovoltaic effect is enhanced in Mn-doped KNN films, which is originated from the improved ferroelectric polarization and narrower band gap. The transition element Nb partially substituted by Mn results in the lattice distortion and further destroys the symmetry space structure, which enhances ferroelectric polarization. And the narrower band gap effectively decreases the internal potential barrier to separate the carriers. This work gives a clear relationship between the lattice distortion, ferroelectric and photovoltaic response. It is certain that lead-free transparent K0.5Na0.5NbO3 films can be potentially applied in viable ferroelectric based solar cells.  相似文献   

20.
(1 − x)Pb(Mg1/3Nb2/3)O3x(Bi0.5Na0.5)TiO3 ceramics were prepared by the conventional mixed-oxide method. All compositions show complete perovskite solid solutions and the structure to change from cubic to rhombohedral at x = 0.5. The dielectric constant and dielectric loss tangent were measured as a function of both temperature and frequency. The results indicated a relaxor ferroelectric behavior for all ceramics. The temperature at maximum of the dielectric constant of PMN–BNT ceramics were seen to increase with increasing BNT content. Moreover, the broadest dielectric peak occurs at x = 0.9, which leads to a morphotropic phase boundary in this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号