首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Single-phase (Bi1−xPrx)(Fe1−xTix)O3 ceramics (x=0.03, 0.06, and 0.10 as BPFT-3, BPFT-6 and BPFT-10, respectively) were synthesized by conventional solid state reaction method. The effect of varying Pr and Ti codoping concentration on the structural, magnetic, dielectric and optical properties of the BPFT ceramics have been investigated. X-ray diffraction indicated pure rhombohedral phase formation for BPFT-3 and BPFT-6 ceramics, however, a structural phase transition from a rhombohedral to an orthorhombic phase has been observed for BPFT-10 ceramic. The maximum remnant magnetization of 0.1824 emu/g has been observed in BPFT-6. With increasing codoping concentration the room temperature dielectric measurements showed enhancement in dielectric properties with reduced dielectric loss. UV–vis diffuse reflectance spectra demonstrated the strong absorption of light in the visible region for a band gap variation 2.31–2.34 eV. Infrared spectroscopy indicated the shifting of Bi/Pr–O and Fe/Ti–O bonds vibrations and change in Fe/Ti–O bond lengths. Decrease in the conductivity on increasing Pr and Ti concentration in BFO is attributed to an enhancement in the barrier properties leading to suppression of lattice conduction path arising due to lattice distortion as confirmed from impedance analysis.  相似文献   

2.
The polycrystalline samples of dysprosium (Dy)-modified bismuth ferrite (i.e., Bi1−xDyxFeO3; x=0–0.2 with the interval of 0.05) (BDFO) were synthesized using a high-temperature solid-state reaction method. Preliminary X-ray structural analysis showed that the reported crystal structure of BiFeO3 (rhombohedral) is invariant even with Dy-substitution at the Bi-site upto x=0.2. The scanning electron micrograph of the compounds showed (i) the uniform distribution of grains on the sample surface with high density and (ii) reduction of grain size on increasing Dy content in BiFeO3 (BFO). Studies of impedance, electrical modulus and electric conductivity of the materials in wide frequency (10–1000 kHz) and temperature (30–500 °C) ranges using a complex impedance spectroscopy technique have provided new and interesting information on the contribution of grains, grain boundary and interface in these parameters. Detailed studies of impedance spectroscopy clearly exhibit the dielectric relaxation of non-Debye type. The ac conductivity of the Dy-substituted BFO obeyed Jonscher's universal power law. An increase in Dy-content in BDFO results in the increase of spontaneous magnetization of BFO due to the collapse of spin cycloid structure.  相似文献   

3.
The influence of processing parameters on phase formation and particle size of hydrothermally synthesized BiFeO3 powders was investigated. BiFeO3 powder was synthesized by dissolving bismuth nitrate and iron nitrate in KOH solution at temperatures ranging from 150 to 225 °C. X-ray diffraction patterns and scanning electron microscopy observation indicated that rod-like α-Bi2O3 phase was formed at initial stage of reaction and dissolved into ions to form thermodynamically stable BiFeO3 phase. Single-phase perovskite BiFeO3 has been formed using a KOH concentration of 8 M at a temperature of ≥175 °C in a 6 h reaction period. BiFeO3 particle growth was promoted by lowering the KOH concentration, or increasing the duration time or reaction temperature. The effects of processing conditions on the formation of crystalline BiFeO3 powders were discussed in terms of a dissolution–precipitation mechanism. The magnetization of the BiFeO3 powders at room temperature showed a weak a ferromagnetic nature.  相似文献   

4.
In this study, (1 − x)BiFeO3–(x)PbTiO3 multiferroic ceramics, with x = 0, 0.1, 0.2, 0.25, 0.3 and 0.4, were processed through high-energy ball milling followed by reactive sintering in air atmosphere. The optimization of the procedure for the preparation of highly-dense (1 − x)BiFeO3–(x)PbTiO3 ceramics was carefully investigated and structural/microstructural effects on ferroic properties were carefully addressed. Shrinkage dilatometric measurements revealed an expansion related to a sintering reaction that has occurred before densification. This sintering behaviour was highly PbTiO3 concentration-dependent. The sintering mechanism was found to be directly related with the aliovalent substitution of Pb and Ti ions on A and B sites of the perovskite structure. The obtained ceramics were confirmed as ferroelectric ordered in ferroelectric characterizations. Remnant polarizations and coercive fields greatly dependent on grain size distribution and aliovalent substitutions were revealed. The magnetic hysteresis displayed a weak-ferromagnetic behaviour in all studied samples.  相似文献   

5.
The lead-free piezoelectric ceramics (Na.47Bi.47Ba.06)1-xCaxTiO3 (x?=?0, 0.01, 0.02, 0.03, 0.05, and 0.08, abbreviated as BNBTC/0, BNBTC/1, BNBTC/2, BNBTC/3, BNBTC/5, and BNBTC/8, respectively) were obtained using the solid-state reaction method. The structure, electric conductivity, and dielectric, ferroelectric, and piezoelectric properties of the Ca2+-doped (Na.47Bi.47Ba.06)TiO3 ceramics were thoroughly investigated. The ceramics sintered at 1200?°C exhibit dense microstructures, having relative densities higher than 96%. The X-ray diffraction results demonstrate that all ceramics have a pure perovskite structure. The mean grain sizes of the ceramics are related to the Ca2+ quantity. A small quantity of Ca2+ ions (x?≤?0.03) improves the piezoelectric and ferroelectric properties of the samples. The dielectric behavior of the samples is sensitive to the Ca2+ content and electric poling. The results demonstrate that the electrical properties of the (Na.47Bi.47Ba.06)TiO3 lead-free ceramics can be well tuned by varying the Ca2+ quantity.  相似文献   

6.
Bulk ceramic samples of BiFeO3 were light doped (up to 1%) with Nb5+ in the place of Fe3+ (B-site doping) and their multiferroic properties were investigated using XRD, SEM, polarization (PMTS) and magnetization (SQUID) techniques. It is shown that even the small percentages of doping can notably change electric and magnetic behavior. Electric conductivity differs by two orders of magnitude between samples doped with 0.2% and 1% Nb. The ferroelectric behavior strongly depended on conduction mechanism, and transition from space-charge-limited current (SCLC) conduction to trap-filled limited (TFL) conduction regime reflected on a change in hysteresis patterns, particularly for the samples with 0.2% and 0.5% Nb. Separation of ZFC-FC magnetization curves occurred for all Nb concentrations and increased with Nb doping. Weak ferromagnetic behavior and the increase of remnant magnetization with Nb concentration was observed from the hysteresis measurements. Coercive field changed drastically compared to the pure BiFeO3, namely, the sample with 1% Nb exhibited very high coercive magnetic field of ~ 10?kOe.  相似文献   

7.
In the present work, the results of the influence of diamagnetic additives on the defects level of ferrite ceramics, its microstructure and magnetic properties are presented. A method based on a mathematical analysis of the experimental temperature dependences of the initial permeability was used for estimation of the defects level in the samples. Model samples containing a controlled amount of the diamagnetic additive Al2O3 served to test the possibility of monitoring this method of nonmagnetic phases of ferrite ceramics. It was shown that with an increase in the concentration of the Al2O3 additive in the range of (0–0.5) wt%, a significant increase in the defects level was observed almost 6-fold. The data from SEM micrographs showed that the addition of Al2O3 affects the type of grains of ferrite ceramics, but does not affect their grain size. Grains are highly agglomerated and show large grain size dispersion and also pore. Obtained data were compared to hysteresis loop parameters. It is shown that with an increase in the concentration of the Al2O3 addition, there is a regular decrease in the residual induction and an increase in the coercive force. However, such changes in hysteresis loop parameters are small in comparison to defects level. Investigations of the true physical broadening of the diffraction reflections were performed for the same model samples in order to compare the change in the defects level to the direct X-ray diffraction measurements of micro deformations. The defects level as a characteristic of the elastic stress of a ferrite ceramics is proposed. This assumption follows from a linear relationship between the defects level and the width of the diffraction reflections. The consistency of the obtained results made it possible to evaluate the high efficiency and sensitivity of the method for defects level estimating.  相似文献   

8.
New ternary compositions in the Pb(Mg1/3Nb2/3)O3-Pb(Yb1/2Nb1/2)O3–PbTiO3 (PMN-PYbN-PT) system were prepared using 0.5Pb(Yb1/2Nb1/2)O3-0.5PbTiO3 (PYbNT) and (1-x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 (x = 0.26; PMNT26 or x = 0.325; PMNT32.5) powders synthesized via the columbite method. Dense (≥ 96% of theoretical density) ceramics with PMN/PYbN mole ratios of 25/75 (R-25), 50/50 (R-50) and 75/25 (R-75T and R-75R) were fabricated by reactive sintering at 1000 °C for 4 h. Therefore, incorporation of PYbNT to PMNT successfully decreased sintering temperature of PMNT from 1200 °C-1250 °C to 1000 °C. Samples with higher density and perovskite ratio together with lower weight loss possessed higher dielectric and piezoelectric values in each composition. The R-75 samples had remanent polarization (Pr) values of 34-36 μC/cm2 and piezoelectric charge coefficient (d33) of 560 pC/N. The sharp phase transition PMNT as a function of temperature became broader or more diffuse with increasing PYbNT content. However, PYbNT addition to PMNT increased Curie temperature (Tc) from 183 °C (for PMNT32.5) to 220-242 °C (for R-75T and R-75R) to 336 °C (for R-25). Therefore, these ternary compositions can be tailored for various high temperature applications due to the relatively higher Tc with enhanced piezoelectric and dielectric properties as compared to PMNT.  相似文献   

9.
《Ceramics International》2016,42(7):8010-8016
In the present work structural, electrical, magnetic and magnetodielectric properties of BaTi1−xFexO3 (0%≤x≤10%) ceramics have been investigated. X-ray diffraction (XRD) study reveals that the coexistence of tetragonal and hexagonal phases is strongly influenced by Fe doping concentration. The increase in Fe-doping content leads to the development of hexagonal phase along with an increase in average grain size. A reduction in the dielectric properties is also observed. All BaTi1−xFexO3 (BTFO) compositions exhibit ferroelectric behavior at room temperature. Remnant polarization (Pr) for pure BaTiO3 (BTO) has been found to be 7.50 µC/cm2 and further decreases with an increase in the Fe concentration. All Fe doped samples exhibit ferromagnetic ordering with saturation magnetization (Ms) being 26 memu/g for x=2.5%. Further, at x=5%, it decreases and thereafter again increases with Fe concentration. The magnetodielectric coefficient increases with Fe doping concentration and highest value found to be 2.80 at x=2.5%.  相似文献   

10.
Dense YMnO3 multiferroic ceramics were prepared by a novel technique of in situ SPS (spark plasma sintering) combined with annealing, and both the dielectric and magnetic characterizations were conducted. Compared with the conventional ceramic process, the synthesis process was greatly simplified, and dense YMnO3 ceramics with uniform microstructures were achieved at a relatively low temperature in very short time. Dielectric characteristics of dense YMnO3 ceramics were well evaluated over broad temperature and frequency ranges. An obvious dielectric relaxation was observed in the low temperature range and a dielectric step was detected in the higher temperature range. Systemic magnetism studies of the present YMnO3 ceramics indicated a weak ferromagnetic characteristic in the temperature lower than the antiferromagnetic transition temperature (TN).  相似文献   

11.
Lead free piezoelectric Bi0.5(Na0.5K0.5)0.5TiO3 (pure and 1 wt.%, 2 wt.%, 4 wt.% Sb-doped) ceramics were synthesized away from its MPB. The crystalline nature of the BNKT ceramic was studied by XRD and SEM. Depolarization temperature (Td) and transition temperature (Tc) were observed through phase transitions in dielectric studies which were found to increase after Sb-doping, thus increasing its usable temperature range. In the study of relaxation behavior, the activation energy for relaxation was found to be 0.33, 0.43, 0.57 and 0.56 eV for pure and Sb-doped samples, respectively. All samples were found to exhibit normal Curie-Weiss law above their Tc. Doping of Sb was found to restrain the diffused character of the pure sample. In P-E loop, Sb-doping was found to increase the ferroelectric properties.Pure and Sb-doped BNKT ceramics exhibited high values of piezoelectric charge coefficient (d33) as 115, 121, 129 and 100 pC/N, respectively.  相似文献   

12.
Bilayered CoFe2O4/0.68Pb(Mg1/3Nb2/3)O3-0.32PbTiO3 nanocomposite films are successfully prepared on Pt/Ti/SiO2/Si substrate via simple sol-gel process. X-ray diffraction result reveals that there exists no chemical reaction or phase diffusion between the CoFe2O4 and 0.68Pb(Mg1/3Nb2/3)O3-0.32PbTiO3 phases. The microstructure is characterized by scanning/transmission electron microscopy (STEM). The composite thin films exhibit both strong ferroelectric and ferromagnetic responses at room temperature. The maximal magnetoelectric coupling coefficient of the nanocomposite films reaches up to 25 mV/cm Oe, occurs at a lower bias magnetic field (Hdc) of 550 Oe.  相似文献   

13.
Lead-free (Ba1−xCax)(Ti0.94Sn0.06)O3 (BCST) (x = 0.01-0.04) ceramics were prepared using a solid-state reaction technique. The effects of Ca content on the phase structure and electrical properties of the BCST ceramics were investigated. High piezoelectric coefficient of d33 = 440 pC/N, planar electromechanical coupling factor of kp = 45% and dielectric constant ?r = 6900 were obtained for the samples at x = 0.03. At room temperature, a polymorphic phase transition (PPT) from orthorhombic phase to tetragonal phase was identified in the composition range of 0.02 < x < 0.04.  相似文献   

14.
BiFeO3-PbZrO3-PbTiO3 ternary solid solution system was investigated for the development of piezoelectric ceramics with high Curie temperatures. The search for the morphotropic phase boundary (MPB) compositions in this ternary system started from mixing two MPB compositions: 0.70BiFeO3-0.30PbTiO3 and 0.52PbZrO3-0.48PbTiO3. The content of PbTiO3 was then further fine tuned in order to reach the appropriate volume fraction between the rhombohedral and tetragonal phases in the sintered ceramics. It was observed that the sintering temperature has a profound impact on the density, grain morphology, dielectric and ferroelectric properties of the ceramics. The composition that displays the best combined structure and properties was identified to be 0.648BiFeO3-0.053PbZrO3-0.299PbTiO3, with a Curie temperature TC of 560 °C, a remanent polarization Pr of 15.0 μC/cm2, and a piezoelectric coefficient d33 of 64 pC/N.  相似文献   

15.
The microwave dielectric properties of La2.98/3Ba0.01(Mg0.5Sn0.5)O3 ceramics prepared by the conventional solid-state method were investigated for application in mobile communication. A 100 °C reduction of the sintering temperature was obtained by using CuO as a sintering aid. A dielectric constant of 20.0, a quality factor (Q × f) of 50,100 GHz and a temperature coefficient of resonant frequency τf of −78.3 ppm/°C were obtained when La2.98/3Ba0.01(Mg0.5Sn0.5)O3 ceramics with 0.25 wt.% CuO were sintered at 1500 °C for 4 h.  相似文献   

16.
The multiferroic behavior with ion modification using rare-earth cations on crystal structures, along with the insulating properties of BiFeO3 (BFO) thin films was investigated using piezoresponse force microscopy. Rare-earth-substituted BFO films with chemical compositions of (Bi1.00−xRExFe1.00O3 (x=0; 0.15), RE=La and Nd were fabricated on Pt (111)/Ti/SiO2/Si substrates using a chemical solution deposition technique. A crystalline phase of tetragonal BFO was obtained by heat treatment in ambient atmosphere at 500 °C for 2 h. Ion modification using La3+ and Nd3+ cations lowered the leakage current density of the BFO films at room temperature from approximately 10−6 down to 10−8 A/cm2. The observed improved magnetism of the Nd3+ substituted BFO thin films can be related to the plate-like morphology in a nanometer scale. We observed that various types of domain behavior such as 71° and 180° domain switching, and pinned domain formation occurred. The maximum magnetoelectric coefficient in the longitudinal direction was close to 12 V/cm Oe.  相似文献   

17.
(Na0.52K0.45Li0.03)1−3xLax(Nb0.88Sb0.09Ta0.03)O3 (NKLLxNST) lead-free ceramics were prepared by normal sintering and their dielectric and piezoelectric properties were investigated. The X-ray methods indicate that the NKLLxNST ceramics with x≤0.003 present a pure perovskite phase at room temperature. The bulk density of NKLLxNST ceramics increases with proper amount of La2O3 contents, and reaches its highest value of 4.544 g/cm3 with the addition of 0.3 mol% La2O3. At x=0.003, remnant polarization Pr, piezoelectric constant d33 and planar mode electromechanical coupling factor kp of NKLLxNST ceramics reach the highest values of 37.80 μC/cm2, 346 pC/N and 40%, respectively, exhibiting excellent “soft” piezoelectric characteristics, demonstrating a tremendous potential of the compositions studied for device applications.  相似文献   

18.
Pb(Co1/3Nb2/3)O3 (PCN) ceramics have been produced by sintering PCN powders synthesized from lead oxide (PbO) and cobalt niobate (CoNb2O6) with an effective method developed for minimizing the level of PbO loss during sintering. Attention has been focused on relationships between sintering conditions, phase formation, density, microstructural development, dielectric and ferroelectric properties of the sintered ceramics. From X-ray diffraction analysis, the optimum sintering temperature for the high purity PCN phase was found at approximately 1050 and 1100 °C. The densities of sintered PCN ceramics increased with increasing sintering temperature. However, it is also observed that at very high temperature the density began to decrease. PCN ceramic sintered at 1050 °C has small grain size with variation in grain shape. There is insignificant change of dielectric properties with sintering temperature. The PE hysteresis loops observed at −70 °C are of slim-loop type with small remanent polarization values, which confirmed relaxor ferroelectric behavior of PCN ceramics.  相似文献   

19.
A full range of CaCu3Ti4O12-HfO2 (CCTO-HfO2) composites were prepared by sintering mixtures of the two components at 1000 °C for 10 h. X-ray diffraction studies confirmed the two-phase nature of the composites. The evolution of the microstructure in the composites, in particular, the size distribution of CCTO grains, was examined by scanning electron microscopy. The studies showed that, as more HfO2 was added, the abnormal grain growth of CCTO and coarsening of the microstructure were gradually suppressed. As a result, the average CCTO grain size was reduced from 50 to 1 μm. The measured dielectric constants agree well with the values calculated from Lichtenecker's logarithmic law, using only the dielectric constants of pure CCTO and HfO2 as two end points. The agreement suggests to us that the dielectric constant of CCTO is dominated by domain boundaries within the grains rather than by grain boundaries between the grains.  相似文献   

20.
The X-ray diffraction patterns of (Na2/3Pb1/3)(Mn1/2Nb1/2)O3 ceramics were measured within 15–850 K temperature range. The anomaly in the thermal expansion temperature dependence occurred in 250–365 K range. The generalised Cole–Cole model was proposed to describe the measured effective electric permittivity influenced by high electric conduction and the coexistence of two contributions ?*(T,f) = ?*lattice + ?*carriers was considered. The analysis of the electric permittivity and conduction exhibited two relaxation processes. The electric conduction relaxation characteristic time values indicated the small polaron mechanism with τ0 ≈ 10−13 s occurring in 240–345 K range and the ionic mechanism with τ0 ≈ 10−11 s involved in the other relaxation occurring in the 320–510 K range. The ionic relaxation process was ascribed to a subsystem of defects, which was weakly interrelated to the anomaly in thermal expansion of the (Na2/3Pb1/3)(Mn1/2Nb1/2)O3 ceramics. The Gate model was proposed to describe the ionic relaxation mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号