首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Layered Li[Ni0.5−xMn0.5−xZr2x]O2 (x = 0, 0.025) have been prepared by the mixed hydroxide and molten-salt synthesis method. The individual particles of synthesized materials have a sub-microsize range of 200-500 nm, and LiNi0.475Mn0.475Zr0.05O2 has a rougher surface than that of LiNi0.5Mn0.5O2. The Li/Li[Ni0.5−xMn0.5−xZr2x]O2 (x = 0, 0.025) electrodes were cycled between 4.5 and 2.0 V at a current density of 15 mA/g, the discharge capacity of both cells increased during the first ten cycles. The discharge capacity of the Li/LiNi0.475Mn0.475Zr0.05O2 cell increased from 150 to 220 mAh/g, which is 50 mAh/g larger than that of the Li/LiNi0.5Mn0.5O2 cell. We found that the oxidation of oxygen and the Mn3+ ion concerned this phenomenon from the cyclic voltammetry (CV). Thermal stability of the charged Li[Ni0.5−xMn0.5−xZr2x]O2 (x = 0, 0.025) cathode was improved by Zr doping.  相似文献   

2.
A series of Ni substituted spinel LiNixMn2−xO4 (0 ≤ x ≤ 0.5) have been synthesized to study the evolution of the local structure and their electrochemical properties. X-ray diffraction showed a few Ni cations moved to the 8a sites in heavily substituted LiNixMn2−xO4 (x ≥ 0.3). X-ray photoelectron spectroscopy confirmed Ni2+ cations were partially oxidized to Ni3+. The local structures of LiNixMn2−xO4 were studied by analyzing the and A1g Raman bands. The most compact [Mn(Ni)O6] octahedron with the highest bond energy of Mn(Ni)O was found for LiNi0.2Mn1.8O4, which showed a Mn(Ni)O average bond length of 1.790 Å, and a force constant of 2.966 N cm−1. Electrolyte decomposition during the electrochemical charging processes increased with Ni substitution. The discharge capacities at the 4.1 and 4.7 V plateaus obeyed the linear relationships with respect to the Ni substitution with the slopes of −1.9 and +1.9, which were smaller than the theoretical values of −2 and +2, respectively. The smaller slopes could be attributed to the electrochemical hysteresis and the presence of Ni3+ in the materials.  相似文献   

3.
The structure of series Sm1−xCaxFe1−xMnxO3 (0.0 ≤ x ≤ 1.0) compounds was investigated. The lattice parameters increase with coupled substitution Sm3+ by Ca2+ and Mn4+ for Fe3+. The variation of parameter, c, is larger than that of a and b, respectivly. The detailed analysis of magnetic properties of series Sm1−xCaxFe1−xMnxO3 (0.1 ≤ x ≤ 0.9) shows that local magnetic interaction between Fe3+ and Fe3+ and Mn4+ and Mn4+ at below magnetic transition temperature is antiferromagnetic. Above magnetic transition temperature the presence of large magnetic cluster is proposed and the sizes of magnetic clusters decrease with Mn4+. The electrical transport behaviors related with small polaron hopping and variable range hopping models.  相似文献   

4.
Spherical Li[Ni0.4Co0.2Mn(0.4−x)Mgx]O2−yFy (x = 0, 0.04, y = 0, 0.08) with phase-pure and well-ordered layered structure have been synthesized by heat-treatment of spherical [Ni0.4Co0.2Mn0.4−xMgx]3O4 precursors with LiOH·H2O and LiF salts. The average particle size of the powders was about 10-15 μm and the size distribution was quite narrow due to the homogeneity of the metal carbonate, [Ni0.4Co0.2Mn(0.4−x)Mgx]CO3 (x = 0, 0.04) precursors. Although the Li[Ni0.4Co0.2Mn0.36Mg0.04]O1.92F0.08 delivered somewhat slightly lower initial discharge capacity, however, the capacity retention, interfacial resistance, and thermal stability were greatly enhanced comparing to the Li[Ni0.4Co0.2Mn0.4]O2 and Li[Ni0.4Co0.2Mn0.36Mg0.04]O2.  相似文献   

5.
We report the electrical conductivity properties of solid-state synthesized perovskite-like La0.8Sr0.2Ga0.8Mg0.2O2.80 (LSGM) and LSGM-SrSn1−xFexO3 (x = 0.8; 0.9) composites. LSGM exhibits both bulk and grain-boundary contribution in the ac impedance plots. The grain-boundary conductivity (σgb) is slightly (≤half-order of magnitude) higher than that of the bulk oxide ion conductivity (σbulk). Powder XRD study reveals that no chemical reaction occurs between LSGM and SrSn1−xFexO3 (1:1 wt.%) at 1000 °C (48 h) and forms a single-phase perovskite-like compound at 1300 °C (48 h) in air, while in hydrogen atmosphere, at 800 °C for 48 h, a growth of LaSrGaO4 and LaSrGa3O7 impurity phases and formation of metallic Fe was observed. The LSGM-SrSn1−xFexO3 (x = 0.8; 0.9) composites show a single or part of semicircle in air at low-temperature regime. The electrical conductivity of the composites were found to be much higher compared to pure LSGM and lower about an order of magnitude than those of pure Sn-doped SrFeO3 perovskite.  相似文献   

6.
Several compositions of NdYb1−xGdxZr2O7 (0 ≤ x ≤ 1.0) ceramics were prepared by pressureless-sintering method at 1973 K for 10 h in air. The relative density, microstructure and electrical conductivity of NdYb1−xGdxZr2O7 ceramics were analyzed by the Archimedes method, X-ray diffraction, scanning electron microscopy and impedance plots measurements. NdYb1−xGdxZr2O7 (0 ≤ x ≤ 0.3) ceramics have a single phase of defect fluorite-type structure, and NdYb1−xGdxZr2O7 (0.7 ≤ x ≤ 1.0) ceramics exhibit a single phase of pyrochlore-type structure; however, the NdYb0.5Gd0.5Zr2O7 composition shows mixed phases of both defect fluorite-type and pyrochlore-type structures. The measured values of the grain conductivity obey the Arrhenius relation. The grain conductivity of each composition in NdYb1−xGdxZr2O7 ceramics gradually increases with increasing temperature from 673 to 1173 K. NdYb1−xGdxZr2O7 ceramics are oxide-ion conductor in the oxygen partial pressure range of 1.0 × 10−4 to 1.0 atm at all test temperature levels. The highest grain conductivity value obtained in this work is 1.79 × 10−2 S cm−1 at 1173 K for NdYb0.3Gd0.7Zr2O7 composition.  相似文献   

7.
E. Ríos 《Electrochimica acta》2005,50(13):2705-2711
We conducted a study on the electroreduction of O2 in alkaline solution at room temperature on pure thin oxide electrodes of composition MnxCo3−xO4 (0 ≤ x ≤ 1) using the double channel electrode flow cell (DCEFC). The oxides were prepared at 150 °C and deposited by spray pyrolysis onto titanium substrates. The oxygen reduction reaction (orr) occurs through “interactive” and “parallel” pathways, and the ratio of O2 molecules reduced to OH ions with respect to those reduced to HO2 ions depends on the oxide stoichiometry and on the applied overpotential. The formation of HO2 increases when the manganese concentration increases. The results obtained for the orr show that the number of electrons transferred per O2 molecule decreases from 3 to 2 and the ratio k1/k2 (the rate constants for direct reduction to OH and indirect reduction to HO2) increases, respectively, in the overpotential studied range (−0.05 to −0.6 V). The Mn3+ ions placed in the B-sites of the spinel structure seem to be the active centres, where hydrogen peroxide is formed.  相似文献   

8.
NiFe2−xBixO4 (x = 0, 0.1, 0.15) nanopowders were synthesized via sol-gel method. The precursor gels were calcined at 773 K in air for 1 h to obtain the pure nanostructured NiFe2−xBixO4 spinel phase. The crystal structure and magnetic properties of the substituted spinel series of NiFe2−xBixO4 have been investigated by means of 57Fe Mössbauer spectroscopy, transmission electron microscopy and alternating gradient force magnetometry. Mössbauer spectroscopic measurements revealed that Bi3+ cations tend to occupy octahedral positions in the structure of the substituted ferrite, i.e., the crystal-chemical formula of the as-prepared nanoparticles may be written as: (Fe)[NiFe1−xBix]O4 (x = 0, 0.1, 0.15), where parentheses and square brackets enclose cations on sites of tetrahedral and octahedral coordination, respectively. Selective area electron diffraction studies provided evidence that the samples of the NiFe2−xBixO4 series, independently of x, exhibit the cubic spinel structure. The values of the saturation magnetization and the coercive field of NiFe2−xBixO4 nanoparticles were found to decrease with increasing degree of bismuth substitution.  相似文献   

9.
Negative thermal expansion materials ZrW2−xMoxO8 (0 ≤ x ≤ 2) have been successfully synthesized by the reaction of a mixture of ammonium tungstate and ammonium molybdate with zirconium oxynitrate using a hydrothermal method. Effect of substituted ion Mo on the microstructure, α-to-β and cubic to trigonal phase transition in resulting ZrW2−xMoxO8 powders was examined by the XRD experiments. It was found that the structural phase transition temperature decreased slightly with increasing substituted content. The cubic to trigonal phase transition was also influenced by substituted content. The resulting products decomposed to WO3/MoO3 and ZrO2 as temperature increasing when x ≤ 0.5 and while x > 0.5, the cubic phase transited to trigonal phase. The effect of substituted Mo on the morphology of resulting products was also investigated by SEM experiments.  相似文献   

10.
A series of partially Fe-substituted lithium manganese oxides LiFexMn2−xO4 (0 ≦ x ≦ 0.3) was successfully synthesized by an ultrasonic spray pyrolysis technique. The resulting powders were spherical nanostructured particles which comprised the primary particles with a few tens of nanometer in size, while the morphology changed from spherical and porous to spherical and dense with increasing Fe substitution. The densification of particles progressed with the amount of Fe substitution. All the samples exhibited a pure cubic spinel structure without any impurities in the XRD patterns.The as-prepared powders were then sintered at 750 °C for 4 h in air. However, the particles morphology and pure spinel phase of LiFexMn2−xO4 powders did not change after sintering. The as-sintered powders were used as cathode active materials for lithium-ion batteries, and cycle performance of the materials was investigated using half-cells Li/LiFexMn2−xO4. The first discharge capacity of Li/LiFexMn2−xO4 cell in a voltage 3.5-4.4 V decreased as the value x increased, however these cells exhibited stable cycling performance at wide ranges of charge-discharge rates.  相似文献   

11.
Co1−xZnxFe2O4 (0.1≤x≤0.9) nanorods have been prepared by the thermal decomposition of the corresponding oxalate precursor, which was synthesized by the template-, surfactant-free solvothermal method. The as-prepared samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FTIR) and vibrating sample magnetometry (VSM). The obtained Co1−xZnxFe2O4 (0.1≤x≤0.9) nanorods were built by many nanoparticles with average sizes around 20 nm to form one-dimensional arrays. Vibrating sample magnetometry measurements show that the coercivity of the ferrite nanorods decreases with increasing Zn content, whereas the specific saturation magnetization initially increases and then decreases with the increase of Zn content. The maximum saturation magnetization value of the as-prepared sample (Co0.5Zn0.5Fe2O4) reaches 43.0 emu g−1.  相似文献   

12.
The structure and electrochemical properties of LiNixMn2−xO4 cathode materials for lithium ion batteries were studied by the means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), cyclic voltammetry, and galvanostatic charge-discharge tests. The cathodes with different Ni contents (LiNixMn2−xO4, x = 0.1, 0.2, 0.3, 0.4, and 0.5) were synthesized by a spray-drying method and showed a single-phase spinel structure without any impurity. The amount of Ni has a large effect on the electrochemical characteristics. Capacity values of different voltage ranges (4- and 5-V ranges) change obviously with amount of Ni-doped. Also, the total discharge capacities increase with the Ni content, and all of them have good cycle stability.  相似文献   

13.
Spinel-type ternary ferrites with composition NiFe2−xCrxO4 (0 ≤ x ≤ 1) were synthesized by a precipitation method and their physicochemical and electrocatalytic properties have been investigated using IR, XRD, BET surface area, XPS, impedance and Tafel polarization techniques. The study indicated that substitution of Cr from 0.2 to 1.0 mol in the spinel matrix increased the apparent electrocatalytic activity of the base oxide towards the O2 evolution reaction in 1 M KOH at 25 °C. The apparent electrocatalytic activity of the oxide with 0.8-1.0 mol Cr was found to be the greatest among the present series of oxides investigated. It is noteworthy that the electrocatalytic activity of the oxide with x = 0.8-1.0 was also greater than those of other spinel/perovskite O2 evolving electrocatalysts reported in literature.  相似文献   

14.
Layered Li1+x(Ni0.3Co0.4Mn0.3)O2−δ (x = 0, 0.03 and 0.06) materials were synthesized through the different calcination times using the spray-dried precursor with the molar ratio of Li/Me = 1.25 (Me = transition metals). The physical and electrochemical properties of the lithium excess and the stoichiometric materials were examined using XRD, AAS, BET and galvanostatic electrochemical method. As results, the lithium excess Li1.06(Ni0.3Co0.4Mn0.3)O2−δ could show better electrochemical properties, such as discharge capacity, capacity retention and C rate ability, than those of the stoichiometric Li1.00(Ni0.3Co0.4Mn0.3)O2−δ. In this paper, the effect of excess lithium on the electrochemical properties of Li1+x(Ni0.3Co0.4Mn0.3)O2−δ materials will be discussed based on the experimental results of ex situ X-ray diffraction, transmission electron microscopy (TEM) and galvanostatic intermittent titration technique (GITT)  相似文献   

15.
La(1−x)SrxFeO3 (x = 0.2,0.4) powders were prepared by a stearic acid combustion method, and their phase structure and electrochemical properties were investigated systematically. X-ray diffraction (XRD) analysis shows that La(1−x)SrxFeO3 perovskite-type oxides consist of single-phase orthorhombic structure (x = 0.2) and rhombohedral one (x = 0.4), respectively. The electrochemical test shows that the reaction at La(1−x)SrxFeO3 oxide electrodes are reversible. The discharge capacities of La(1−x)SrxFeO3 oxide electrodes increase as the temperature rises. With the increase of the temperature from 298 K to 333 K, their initial discharge capacity mounts up from 324.4 mA h g−1 to 543.0 mA h g−1 (when x = 0.2) and from 147.0 mA h g−1 to 501.5 mA h g−1 (when x = 0.4) at the current density of 31.25 mA g−1, respectively. After 20 charge-discharge cycles, they still remain perovskite-type structure. Being similar to the relationship between the discharge capacity and the temperature, the electrochemical kinetic analysis indicates that the exchange current density and proton diffusion coefficient of La(1−x)SrxFeO3 oxide electrodes increase with the increase of the temperature. Compared with La0.8Sr0.2FeO3, La0.6Sr0.4FeO3 electrode is a more promising candidate for electrochemical hydrogen storage because of its higher cycle capacity at various temperatures.  相似文献   

16.
The Li[Li(1/3−x/3)CrxMn(2/3−2x/3)]O2 (0.15 ≤ x ≤ 0.3) cathode materials were synthesized by sol-gel process using aqueous solutions of metal acetates and citric acid as the chelating agent. The precipitate of metal citrate was dried in a vacuum oven for 10 h at 100 °C. After drying, the gel precursor was calcined at 300 °C for about 10 h. The resulted powder was ground and heated at 900 °C. The structural characterization was carried out by fitting the XRD data with Rietveld program. The samples exhibited a well defined layered structure and the unit cell parameters linearly increased with increasing chromium contents in Li[Li(1/3−x/3)CrxMn(2/3−2x/3)]O2 Surface morphology was determined by SEM and HRTEM and it is found that the cathode material consisted of highly ordered single crystalline particles with layered-hexagonal structure. Test cells were assembled and cycled in the voltage range of 2.0-4.9 V with a current density of 7.947 mA/g. Electrode with (x = 0.2) delivered a high reversible capacity of around 280 mA h/g in cycling.  相似文献   

17.
Cation substituted bismuth vanadate possesses high oxygen ion conductivity at lower temperatures. The ionic conductivity of this material at 300 °C is 50–100 times more than any other solid electrolyte. Three phases (α, β, γ) are observed in the substituted compound; α and γ are low and high conducting phase, respectively. Samples of Bi4V2−xCuxO11−δ (x = 0–0.4) were prepared by solid-state reaction technique. Impedance spectroscopy measurements were carried out in the frequency range of 100 Hz to 100 kHz using gold sputtered cylindrical shaped pellets to obtain bulk ionic conductivities as a function of the substitution and temperature. The change of slopes observed in the Arrhenius plots is in agreement with the phase transitions for all the compositions. The highest ionic conductivity of the Cu-substituted compound was observed in Bi4V1.8Cu0.2O11−δ which is attributed to its lower activation energy. Microstructural studies indicated the stabilization of high temperature γ-phase at low temperature in those samples whose ionic conductivity observed was higher.  相似文献   

18.
We report the effect of Cu2+ ion on CaAl2O4 with different molar concentrations of 0.0, 0.4 and 0.8 M prepared by simple combustion method. The materials have been characterized by X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR) and scanning electron microscopy (SEM). DC electrical conductivity has also been measured to study the electrical behavior of the materials. The XRD patterns confirm the formation of single-phase CaAl2O4 along with some impurity phases like CaAl4O7, CaAl12O19 and Ca12Al14O33. The FT-IR spectra show the stretching and bending vibrations of the synthesized compounds. DC electrical conductivity of the Ca1−xCuxAl2O4 is found to vary from 26.46 × 10−4 to 515.68 × 10−4 S cm−1 for x = 0.0 to x = 0.8 at the measuring temperature of 1000 °C. SEM images show the morphological features of the compounds.  相似文献   

19.
Ce0.8Sm0.2−xLaxO1.9 powders, denoted as LaxSDC (for x=0, 0.01, 0.03, 0.05, 0.07 and 0.1), were synthesized via the mechanical milling reaction method. The La3+ doping content has a remarkable influence on structural and electrical properties. The phase identification and morphology were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Lattice parameters were calculated by the Rietveld method. It was observed that the lattice parameter values in Ce0.8Sm0.2−xLaxO1.9 systems obey Vegard's law. The pellets were then sintered at 1500 °C in air for 7 h. The relative densities of these pellets were over 93.7%.The electrical conductivity was studied using two-probe impedance spectroscopy and results showed that the conductivity of Ce0.8Sm0.2−xLaxO1.9 first increased and then decreased with La dopant content x. Results also showed that Ce0.8Sm0.17La0.03O1.9 had the highest electrical conductivity, σ700 °C equal to 3.8×10−2 Scm−1 and an activation energy equal to 0.77 eV. It was therefore concluded that co-doping with the appropriate amount of La can further improve the electrical properties of ceria electrolytes.  相似文献   

20.
Dense sintered samples of Th1 − xUxO2 solid solutions were prepared from the initial precipitation of oxalate precursors through two different wet chemical routes, based either on the direct precipitation of the cations or on the use of hydrothermal method. For both low-temperature precursors, the specific surface area was followed versus the heating temperature and the influence of the conversion step on the oxide powder reactivity was evidenced since it allowed to obtain reactive surfaces in the range of 15-45 m2 g−1 without any additional grinding step. From dilatometric studies, the operating conditions required for the complete densification of the Th1 − xUxO2 pellets were set to a heat treatment of 3 h at 1500 °C. In these conditions, the density of the samples lies between 94% and 99% of the calculated value whatever the preparation method chosen which appeared very promising compared to the results already reported under inert atmosphere. The initial precipitation of low-temperature precursors thus allowed to lower the sintering temperature by about 100 °C while the use of hydrothermal conditions significantly improved the cationic distribution in the sintered samples, as shown from EPMA statistical experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号