首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New sorbents for efficient sorption of radioiodine and radiocesium from the vapor-gas phase and aqueous solutions were prepared by treatment of Cu+- and Ag+-substituted NaX and NaA zeolites with acetylene in aqueous solution. The distribution factor K d of radioiodine and radiocesium between the modified sorbents and aqueous solutions is higher than 103-104 ml g- 1. Decontamination factor of the vapor-gas phase with respect to radioiodine and 137CsI aerosols exceeds 102-103 and 103, respectively. The sorption properties of the modified sorbents in both aqueous solutions and the vapor-gas phase are better than those of the initial sorbents. However, localization of radioiodine from the vapor-gas phase with the Cu+-containing sorbents is less efficient than with the Ag+-containing zeolites. At the same time, in aqueous solutions the sorption capacity of the Cu+-containing sorbents for radioiodine is appreciably higher than that of the Ag+-containing sorbents. The sorption properties of the modified sorbents were studied as influenced by various factors. Paracomplexes of univalent copper and silver with C2H2, H2O, and anions present in the solution are probably formed during modification of the metal-containing zeolites. The dependence of K d of radioiodine on the metal concentration in the sorbent, the free pore volume of the sorbent, and the anion nature was revealed.  相似文献   

2.
A procedure for recovery of 131I and 137Cs radionuclides from Fizkhimin sorbent containing 137Cs131I and 137CsOH radioaerosols and also of Ag131I formed in the sorbent matrix during chemisorption of gaseous 131I2 and CH3 131I was developed. Sequential treatment of the sorbent with 6.0 M HNO3 and then 10.0 M N2H4·nH2O allows practically complete (more than 99%) removal of 137Cs and noticeable decrease of the 131I content in the sorbent matrix (in some cases, by a factor of more than 10).  相似文献   

3.
Sorption of CH3 131I and 131I2 from water vapor–air medium onto SiO2–C (2 wt %) composite material and a mixture of SKT-3I with SiO2–Cu0 (10 wt %) was studied. SKT-3I shows high performance in sorption of 131I2 and CH3 131I. The degree of localization of 131I2 and CH3 131I exceeds 99.99% at ~60°С and gas phase–sorbent contact time τ of ~0.45 s. The degree of sorption of 131I2 and CH3 131I onto the SiO2–C (2 wt %) composite material under similar conditions does not exceed ~87 and ~8%, respectively. Experiments on 131I2 and CH3 131I sorption onto mechanical mixtures of SiO2–Cu0 and SKT-3I in the weight ratio varied from 1: 4 to 1: 1 showed that the degree of the 131I2 and CH3 131I sorption at ~60°С and τ ~0.45 s exceeded 99.95 and 99.0%, respectively. The scheme of layer-by-layer arrangement of SiO2–Cu0 and SKT-3I in the column was examined. It shows promise for use in AUI-1500VM filters in ventilation systems of nuclear power plants.  相似文献   

4.
The effect of hydrophobization of Ag-containing nonmodified and acetylene-modified zeolites with poly(vinyl chloride) (PVC) on sorption characteristics of sorbents with respect to CH3 131I was studied. The PVC coating on the sorbent results in increased absorbtion of CH3 131I from a water vapor-air flow at a humidity of up to approximately 70 vol %; the decontamination factor of approximately 105 is reached. The sorbent modified with PVC retains radioiodine at heating to 300°C and can be proposed for practical purposes.  相似文献   

5.
Sorption of 131I2 and CH3 131I from gas-water vapor medium on porous inorganic sorbents based on silica gel of the MSKG type, containing d elements, was studied. Sorbents containing Zn, Ni, Cu, and Co ammoniates show a low degree of recovery of 131I2 and CH3 131I from the gas-water vapor flow (less than 30%); their calcination at a temperature above 250°C does not noticeably affect the sorption power of the sorbent. The sorbents containing Zn, Ni, and Cu nitrates, both unmodified and modified, show a low degree of recovery of CH3 131I from the gas-water vapor medium (less than 1%). At the same time, whereas for unmodified sorbents the degree of recovery of 131I2 from the gas-water vapor phase does not exceed 70%, their modified analogs have higher degree of absorption of 131I2 (more than 99%), comparable with the similar data for Ag-containing sorbents based on silica gel of the MSKG type.  相似文献   

6.
Sorption of CH3 131I from water vapor-air medium on Fizkhimin and Siloksid inorganic sorbents and on SKT-3I activated carbon was studied. The sorption power of Fizkhimin, Siloksid, and SKT-3I sorbents toward CH3 131I was examined (1) after their 20-h contract with water, followed by removal of the liquid phase and drying at 110°C; (2) after 4-h treatment with steam (95–98°C), followed by drying at 25°C; (3) after keeping for 9 months in 100% humid air at ambient temperature of 10 to 45°C; and (4) after treatment with a water vapor-air flow (95–98°C, 60–80 vol % water vapor) for 2 h. In most cases, Fizkhimin sorbent and SKT-3I activated carbon preserve high sorption efficiency toward CH3 131I from water vapor-air flow.  相似文献   

7.
The study of the behavior of 137Cs131I in the presence of MCl (M = NH4 +, K+, Ag+, and Cu+) in the water vapor-gas phase showed that CsI aerosols are localized in the MCl matrix owing to both agglomeration cocrystallization [137Cs131I-MCl systems (M = K+, Ag+, NH4 +)] and agglomeration capture [137Cs131I-CuCl system]. The main advantage of the first process is formation of crystalline globules encapsulating radioiodine in their bulk, which prevents transformation of radioiodine into elemental iodine and methyl iodide.  相似文献   

8.
Sorption of 131I2 and CH3 131I from water vapor-air phase on Polysorb-1 polymeric sorbent was studied. The efficiency of radioiodine sorption depends on the humidity and flow rate of the vapor-air stream, column temperature, and the amount of volatile radioiodine compounds. Polysorb-1 effectively removes molecular iodine at the relative humidity of up to 100% and the sorption temperature from 20 to 125°C. Under these conditions, more than 99.9% of 131I2 is removed from a gas flow at the height of the sorbent bed of 22.0 cm and time of gas-sorbent contact of 3.4 s. Polysorb-1 does not sorb methyl iodide from a water vapor-gas flow.  相似文献   

9.
Sorption of CH3 131I from the steam-gas phase on Ag-containing zeolites modified with acetylene was studied. The radioiodine adsorption in a column depends on the silver concentration in the sorbent, humidity of the steam-gas flow, and the temperature. The modified sorbents AgX-m containing 30-57% silver efficiently localize CH3I at the humidity up to 80% and sorption temperature from 120 to 195°C. Under these conditions the decontamination factor of a gas flow with respect to CH3 131I at 7.5-cm height of the sorbent bed and a 0.2 s gas-sorbent contact time exceeds 99.99%. The sorption properties of the modified Ag-containing sorbents are better that those of the nonmodified sorbents and known Ag-substituted zeolites.  相似文献   

10.
Poly(p-phenylene) (PPP) films were synthesized by using benzene and fluorosulphonic acid (FSO3H) as a strong acid containing Ag+, Pb2+ and Cu+ ions in methylene chloride (CH2Cl2) solution. Addition of Ag+ or Pb2+ ions into the polymerization medium improved the PPP films formation, but Cu+ ion did not have an effect on polymerization. PPP films were characterized by cyclic voltammetry, IR and TGA. Dry conductivities were measured by using four probe technique. Received: 18 September 2000 / Reviewed and accepted: 20 September 2000  相似文献   

11.
Sorption of CH3 131I from a water vapor-air medium onto Fizkhimin inorganic sorbents containing Ag and nonferrous metals (Cu, Ni, Zn) was studied. Ag-free Fizkhimin inorganic sorbents exhibit poor ability to take up CH3 131I. No more than 51% of the initial 10-mg portion of CH3 131I is taken up by the sorbents heated to 350°C. The sorbents containing 1.4–2 wt % Ag and 5.6–8 wt % nonferrous metal (Cu, Ni, Zn) show high ability to take up CH3 131I (>99.8% uptake), with the performance of the Ni-containing sorbents remaining very high (>99.9%) with variation of various parameters of both the sorbents and the medium. The Cu- and Zn-containing analogs do not exhibit such properties.  相似文献   

12.
Gas-phase UV photolysis of 131I-labeled CH3I was studied. CH3 131I (228 mg) is completely photolyzed within 5 min under the static conditions at room temperature in an argon atmosphere. The final radioiodine compound formed under these conditions is 131I2. The chemical composition of the final products of CH3I photolysis in air is more complex. Agglomeration corcystallization of the CH3I photolysis products with NH4Cl in the gas phase was studied. The results of this study suggest that the main final product of CH3I photolysis in air is a fine IxOy aerosol. In the presence of NH4Cl, formation of NH4 131I aerosols is possible.__________Translated from Radiokhimiya, Vol. 47, No. 3, 2005, pp. 269–273.Original Russian Text Copyright © 2005 by Kulyukhin, Kulemin, Rumer, Konovalova.  相似文献   

13.
Sorption of CH3 131I from a water vapor-air medium on porous inorganic sorbents based on silica gel of KSKG grade and containing triethylenediamine (CH2-CH2)3N2 and d element nitrates was studied. The sorbents prepared by impregnation with (CH2-CH2)3N2 and Zn, Ni, and Cu nitrates from aqueous solution recover CH3 131I from a water vapor-air flow poorly (degree of recovery <10%). Calcination of the sorbents at temperatures exceeding 250°C does not noticeably affect their sorption power. Heating of the complex Ag(NO3)(OH)·(CH2-CH2)3N2H to 160°C causes its exothermic decomposition with a large heat release and formation of metallic silver. Thermal decomposition of the complex of Cu2+ with (CH2-CH2)3N2, synthesized from an aqueous solution at the molar ratio Cu(NO3)2: (CH2-CH2)3N2 = 1: 2, occurs similarly.  相似文献   

14.
Sorption of CH3 131I from the water vapor-air medium onto inorganic nanocomposite materials containing 1, 2, 4, and 8 wt % Ag in various chemical forms was studied. Despite high ability of the synthesized nanocomposite materials containing 1, 2, and 4 wt % Ag in various chemical forms to take up 131I2 (>99%), they cannot be used for localizing CH3 131I from the gas flow. The material containing 8 wt % Ag, namely, the SiO2-8% Ag nanocomposite prepared by treatment of the precursor with a 0.01 M hydroxylamine solution, is the most suitable for this purpose.  相似文献   

15.
New sorbents for efficient sorption of radioiodine and radiocesium from aqueous solutions and vapor-gas phase were prepared by treatment of Cu+-containing NaX and NaA zeolites with acetylene in aqueous solution. The modified zeolites sorb radioiodine and radiocesium from aqueous solution with the distribution coefficient more than 104 and from a vapor-gas flow with the decontamination factor higher than 102 and 103, respectively.  相似文献   

16.
Transition metal ions (Cu+, Ag+) incorporated within the cavities of zeolites by an ion-exchange method exhibit unique photoluminescence under UV irradiation due to the inner shell type electronic transition (d9s1 → d10). Detailed photoluminescence investigations revealed that the transition metal ions exist in highly dispersed state with linear 2 coordination sphere and interact with NOx (NO and N2O) in their photoexcited states. In fact, Cu+ and Ag+ ions within zeolites show an efficient and unique photocatalytic performance for the decomposition of NO into N2 and O2 at ambient temperature. Detailed studies of the interaction of NOx with the excited states of these metal ions indicated that an electron transfer from the s orbital of the excited state of Cu+ or Ag+ ions into the π* antibonding orbital of NOx initiates the decomposition of NOx into N2 and O2.  相似文献   

17.
A composite sorbent based on spherically granulated chitosan modified with a mixed ferrocyanide K2Cu3[Fe(CN6)]2 (SGC-FC) was prepared. The sorbent is highly effective toward 137Cs. The physicochemical parameters of 137Cs+ sorption by this sorbent were determined: total and equilibrium static exchange capacity, dynamic exchange capacity, sorption equilibrium constants, etc. The influence of the chemical composition of the solution on the 137Cs+ sorption by SGC-FC was examined in detail. Based on the calculated value of the dimensionless Biot number Bi, a conclusion was made that the kinetics of 137Cs+ sorption on SGC-FC is mainly determined by external diffusion of 137Cs+ ions to reaction centers of the sorbent. The possibility of using the sorbent in monitoring of sea areas was considered.  相似文献   

18.
An ion-exchangeable zeolite (mordenite) is used to control the formation of nanoparticles and clusters within the solid matrix by the hydrogen reduction of metal ions (Ag+, Cu2+, and Ni2+). SiO2/Al2O3 molar ratio in mordenite appears to be an efficient tool to manage the reducibility of the metal ions. Few-atomic silver clusters in line with the larger silver nanoparticles were observed with DRS for the reduced Ag+-exchanged mordenites. Cu2+-exchanged ones produce the copper nanoparticles with different optical appearance, and Ni2+-exchanged mordenites are reduced up to complicated species with no explicit assignment of metal particles under the conditions studied.  相似文献   

19.
The possibility of using sorbents based on KSKG coarsely porous silica gel and containing triethylenediamine N(CH2-CH2)3N (TEDA) for recovering 137Cs, 90Sr, 90Y, and d-element ions (Cu2+, Ni2+) from aqueous solutions was examined. Both 90Sr, 90Y radionuclides and Cu2+, Ni2+ ions are sorbed on KSKG containing 0.01–6.72 wt % TEDA. However, on sorbents based on KSKG and containing complexes of Cu2+, Ni2+, and Zn2+ nitrates with TEDA, the 137Cs, 90Sr, and 90Y radionuclides are not sorbed. The equilibrium in the systems with these sorbents is attained within 3 h. The sorption capacity for Cu2+ and Ni2+ strongly depends on the conditions of the sorbent synthesis. The capacity of the sorbents for Cu2+ varies from 63 to 320 mg of metal per gram of sorbent. For Ni2+, the sorption capacity is considerably lower (no more than 130 mg of Ni2+ per gram of sorbent). The distribution coefficients of 90Sr and 90Y are 300–700 ml g?1 at the contact time of the solid and liquid phases of 96 h and V/m = 100 ml g?1.  相似文献   

20.
Thermal decomposition of a volatile organic compound of radioactive iodine, methyl iodide CH3 131I, in a gas flow in the presence of various modifications of granulated materials based on KSKG silica gel impregnated with d elements was studied. Under comparable experimental conditions, 97–99% decomposition of CH3 131I is achieved at 770 ± 15°C without sorbents and at 540 ± 10 and 465 ± 20°C in the presence of straight KSKG silica gel and of the material based on it, impregnated with compounds of Ni or its mixture with Cu (8–10 wt %), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号