首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了17—4PH不锈钢的金属注射成形工艺及其流变学性能、力学性能、微观组织和耐腐蚀性能。结果表明:采用65%PW-30%EVA-5%SA粘结剂组成的注射料具有最好的综合流变学性能。在1380℃保温90min的烧结条件下,注射成形17—4PH不锈钢的力学性能最佳,孔隙分布均匀,晶粒尺寸适中。而保温60和120min则分别表现出烧结不完全和过烧现象。1380℃保温90min烧结所得到的力学性能为P=7.70g/cm^3,σb=1275MPa,δ=5%,硬度36HRC。注射成形17—4PH不锈钢的密度、抗拉强度、硬度随着烧结温度的升高而提高,伸长率则随着烧结温度的升高而下降。17—4PH不锈钢的耐蚀性好,腐蚀期长,具有活化-化金属极化曲线的特征,但钝化电位范围较窄,耐点蚀性能较差。  相似文献   

2.
Advanced metallic bone implants are designed to have a porous surface to improve osseointegration and reduce risks of loosening. An alternative approach to existing surface treatments to create a porous surface is to bond separately produced metallic foams onto the implant. To assess the feasibility of this approach, a Ti-6Al-4V foam was diffusion bonded onto bulk Ti-6Al-4V in an argon atmosphere at temperatures between 1173 K and 1223 K (900 °C and 950 °C) for times between 45 and 75 minutes. These specimens were tested in tension to determine bond quality: failures occurred in the foam, indicating a strong diffusion-bonded interface. The quality of the bond was confirmed by metallographic studies, indicating that this approach, which can also be applied to creating of sandwich with porous cores, is successful.  相似文献   

3.
4.
Mechanical behaviors at 538 °C, including tensile and creep properties, were investigated for both the Ti-6Al-4V alloy and the Ti-6Al-4V composite reinforced with 10 wt pct TiC particulates fabricated by cold and hot isostatic pressing (CHIP). It was shown that the yield strength (YS) and ultimate tensile strength (UTS) of the composite were greater than those of the matrix alloy at the strain rates ranging from approximately 10−5 to 10−3 s−1. However, the elongation of the composite material was substantially lower than that of the matrix alloy. The creep resistance of the composite was superior to that of the matrix alloy. The data of minimum creep strain rate vs applied stress for the composite can be fit to a power-law equation, and the stress exponent values of 5 and 8 were obtained for applied stress ranges of 103 to 232 MPa and 232 to 379 MPa, respectively. The damage mechanisms were different for the matrix alloy and the composite, as demonstrated by the scanning electron microscopy (SEM) observation of fracture surfaces and the optical microscopy examination of the regions adjacent to the fracture surface. The tensile-tested matrix alloy showed dimpled fracture, while the creep-tested matrix alloy exhibited preferentially interlath and intercolony cracking. The failure of the tensile-tested and creep-tested composite material was controlled by the cleavage failure of the particulates, which was followed by the ductile fracture of the matrix.  相似文献   

5.
使用热脱粘-真空烧结连续工艺制取金属注射成形(MIM)17—4PH不锈钢。观察分析了MIMl7—4PH试样烧结态和时效态的显微组织,测试了其力学性能和耐蚀性能。结果表明,使用粉末装载量(体积分数)为65%的注射料,采用热脱粘-真空烧结连续工艺,在1360℃下烧结2h的MIM17—4PH经热处理后达到的综合性能为p=7.72g/cm^3,σb=1100MPa,σ0.2=1053MPa,δ=14%,αkv=630kJ/m^2,HRC=37。  相似文献   

6.
Cavitation-induced erosion has been examined in Ti-6A1-4V in the mill annealed, solution-treat and aged, and beta annealed conditions. Weight loss data show only small differences between heat treatments with the solution-treat and aged microstructure exhibiting the lowest weight loss rates. Sequential micrographs of the same specimen area as a function of erosion time show that initial fracture occurs along the α interfaces and along crystallographic slip bands in the α-phase. The early stages of erosion are also dependent on the orientation of the Widmanstatten colonies in the beta annealed condition. These observations strongly suggest that fatigue fracture is important, at least in the early stages of the cavitation erosion process. Depression of the softer α- phase also occurs at short exposure times, and this facilitates fracture and removal of the exposed material;i.e., β-phase or tempered martensite. Examination of the eroded surfaces in the later stages where considerable material has been removed shows little evidence of the underlying microstructure, despite the distinct differences in the micro-structures of the samples tested. Formaly Undergraduate Students at Michigan Technological University  相似文献   

7.
Solid-state diffusion bonding of Ti-6Al-4V and type 304 SS was investigated in the temperature range of 750 °C to 950 °C, under a uniaxial load for 5.4 ks in vacuum. The diffusion bonds were characterized using light and scanning electron microscopy. The scanning electron microscopic images in backscattered mode show the existence of different reaction layers in the diffusion zone. The composition of these layers was determined by energy-dispersive X-ray spectroscopy (EDS) to contain the α-Fe, χ, λ, FeTi, β-Ti, and Fe2Ti4O phases. The presence of these intermetallics was confirmed by X-ray diffraction. The bond strength was evaluated, and the maximum tensile strength of ∼342 MPa and the maximum shear strength of ∼237 MPa were obtained for the diffusion couple processed at 800 °C due to the finer width of the brittle intermetallic layers. With a rise in joining temperature, the bond strength drops owing to an increase in the width of the reaction layers. The activation energy and growth constant were calculated in the temperature range of 750 °C to 950 °C for the reaction products. The χ phase showed the fastest growth rate. A fracture-surface observation in a scanning electron microscope (SEM) using EDS demonstrates that failure takes place mainly through the β-Ti phase for the diffusion couples processed in the aforementioned temperature range.  相似文献   

8.
Ti-6Al-4V samples were plasma nitrided at 520°C in two environments (nitrogen and a mixture of nitrogen and hydrogen in the ratio of 3:1) for two different time periods (4 h and 18 h). Fretting wear tests were conducted on unnitrided and nitrided samples for 50,000 cycles using two counterbody materials (unnitrided Ti-6Al-4V and alumina). Gross slip prevailed at a normal load of 4.9 N while mixed stick-slip prevailed at 9.8 N. Tangential force coefficient values of plasma nitrided samples were lower than those of unnitrided samples. The tangential force coefficient nearly stabilised after thousand cycles in case of samples tested against Ti-6Al-4V counterbody. On the other hand, it showed a continuously increasing trend in case of specimens tested against alumina counterbody. The samples nitrided for 4 h exhibited higher hardness and lower tangential force coefficient compared to the specimens nitrided for 18 h. The samples nitrided in nitrogen-hydrogen mixture environment exhibited higher hardness and lower tangential force coefficient compared to the specimens nitrided in nitrogen. The samples plasma nitrided in nitrogen-hydrogen mixture for 4 h exhibited the highest hardness and the lowest tangential force coefficient. The wear volume of the plasma nitrided samples was lower than that of the unnitrided samples. Owing to tribochemical reactions, the wear volume of unnitrided and nitrided samples fretted against alumina ball was higher than that of the samples fretted against Ti-6Al-4V. A consistent trend was not observed regarding which nitriding condition would result in lower wear volume at different loads.  相似文献   

9.
The tensile and high-cycle fatigue properties for 17-4 PH* stainless steels in three different conditions were investigated at temperatures ranging from room temperature to 400 °C. Results indicated that the yield strength and fatigue strength for the three conditions at a given temperature took the following order: condition H900 > condition A> condition H1150. The yield strength of each condition decreased with increasing temperature except for condition A, which was tested at 400 °C with longer hold times, where a precipitation-hardening effect took place. The S-N curves showed that the fatigue strengths of each condition in the short-life regime were decreased with an increase in temperature. In the long-life regime, the fatigue strengths of condition A at 400 °C were greater than those at lower temperatures as a result of an in-situ precipitation-hardening effect. The fatigue strengths of condition H900 in the long life regime at 300 °C were superior to those at lower temperatures, due to the mechanisms of surface oxidation and thermal activation of dislocations. Fractography observations indicated that a shift of fatigue fracture from surface to internal crack initiation occurred at higher temperatures (300 °C and 400 °C) with long fatigue lives.  相似文献   

10.
The alloy Ti-6-Al-4V deforms superplastically in the temperature range 750 to 950° The most important factor which is responsible for superplastic behavior was found to be the very fine grain size. Strain rate has no direct effect on superplasticity, however when the strain rate is very low (approximately 2 × 10 s), prolonged exposure to high temperature causes grain growth and early failure. The strain rate sensitivity factorm = 0.5 and the apparent activation energyAH = 45,000 cal/mole, which is approximately the same as the activation energy for grain boundary self diffusion of titanium. Both values are independent of strain rate within the range 10 - 2.5 × 10 s. All the experimental points fall in a straight line when plotted as log (εkTd* 2/DgbGb3) vs log (σ/G) with a slopen = l/m = 2. This is in excellent agreement with the theory of grain boundary sliding accommodated by dislocation motion.  相似文献   

11.
Creep tests were conducted at 295 K on Ti-6 Al-4 V in the solution treated and aged (4 h at 815 K) condition, and in the as-welded condition. Some aged specimens were tested after pre-straining. Creep stresses ranged from 40 to 90 pct of the aged material yield strength. Results showed that creep was of the primary or transient kind in all cases, and was much greater in welded than in aged material. In general, pre-strains reduced creep, although a strain larger than 10-3 was needed to do this at the highest creep stress. Activation areas A* were between 10 and 20 b2, and thus were similar to tensile results on titanium and its alloys. The microstructural rationale applied to Ti-5 Al-2.5 Sn in earlier work, based on the character of dislocation sources, proved successful in understanding the effects of prestrain in this work. Formerly with Sandia Laboratories, Livermore, Calif.  相似文献   

12.
The segregation of Cu and Ni in a 17-4PH stainless steel piston rod has been confirmed to be responsible for the cracking after heat treatment.Further investigation showed that the segregation zone was composed of three layers,namely the fine grain martensitic layer,the coarse grain martensitic layer and the coarse grain austenitic layer from the matrix to the crack surface.Three button ingots with the same chemical compositions as those three layers have been prepared to evaluate the grain size distribution,microstructure and mechanical properties.The effects of Cu and Ni segregation on the microstructures of those three layers have been explored by thermodynamic calculation.Based on the microstructure and mechanical properties results,an intensive understanding of the cracking in the segregation zone was therefore reached.  相似文献   

13.
The internal reactions associated with hydrogen absorbed at ambient temperature by Ti-6A1-4V having a transformedβ microstructure were determined by using X-ray diffraction analysis. Below 650 ppm, the absorbed hydrogen was concentrated primarily in theβ phase causing an increase in the d(200) spacing and considerable X-ray line broadening. The a phase, however, was not significantly affected by the absorbed hydrogen showing no change in the d(1120) and d(1012) spacings and only a finite amount of line broadening. At approximately 650 ppm H, hydride precipitation began at thea-β interface. With increasing hydrogen content, theβ phase d(200) spacing continued to increase, the (200) X-ray line broadening reached a limiting value, and massive hydrides were formed. The data indicates that low concentrations of hydrogen absorbed by a-β titanium alloys can be detected by examining the X-ray line profile of theβ phase. W. D. HANNA, formerly with the McDonnell Douglas Astronautics Co.  相似文献   

14.
This study determined the conditions under which Ti-6Al-4V sheet with a strong basal plane texture can be produced on a commercial basis. Texture development during all stages of processing starting with the forged sheet bar was followed using pole figures. The influences of sheet bar forging temperature, rolling temperature, rolling procedures and prior texture were examined. The deformation mechanisms by which a basal plane texture can form are discussed and it is shown that (1120) slip principally on {1010} prism planes can account for it. To demonstrate that texture can be controlled on a production basis, two 1.2 m×2.4 m×1.5 mm sheets from each of six heats of Ti-6Al-4V were rolled with a uniform basal plane texture.  相似文献   

15.
The hydrogenation behavior of Ti-6Al-4V, with the starting microstructures of coarse equiaxed α and coarse Widmanstätten α, respectively, was investigated under a hydrogen pressure of 0.1 MPa at temperatures between 843 and 1123 K. The hydrogen content was determined as a function of hydrogenation time, hydrogenation temperature, and hydrogen flow rate. The phases presented in the alloy of after hydrogenation were determined with X-ray and electron diffraction analysis in order to define the effect of Thermochemical Processing (TCP) on the microstructure of the alloy. Mechanical properties and fracture toughness of Ti-6Al-4V and Ti-5Al-2.5Fe subjected to the various TCP were then investigated. Hydrogenation of Ti-6Al-4V with the starting microstructure of coarse equiaxed α at 1023 K, just below hydrogen saturated β (denoted β″ (H)) transus temperature, produces a microstructure of a, orthohombic martensite (denoted α″ (H)) and β (H). Hydrogenation at 1123 K, above β (H) transus, results in a microstructure of α″ (H) and β (H). Microstructure refinement during TCP results mainly from decomposition of α″ (H) and ;β (H) into a fine mixture of α + β during dehydrogenation. An alternative TCP method is below β (H) transus hydrogenation (BTH), consisting of hydrogenation of the alloy below the hydrogenated β (H) transus temperature, air cooling to room temperature, and dehydrogenation at a lower temperature, which is found to improve mechanical properties significantly over a conventional TCP treatment. Compared with the untreated material, the BTH treatment increases the yield strength and increases the ultimate tensile strength significantly without decreasing the tensile elongation in the starting microstructure of coarse equiaxed α or with a little decrease in the tensile elongation in the starting microstructure of coarse Widmanstätten α, although the conventional TCP treatment results in a large decrease in elongation over the unprocessed material in Ti-6Al-4V. In Ti-5Al-2.5 Fe, both conventional TCP and BTH result in a increase in yield strength, ultimate tensile strength, and elongation; however, the BTH gives the best balance between strength and elongation. The TCP-treated Ti-6Al-4V shows smaller fracture toughness compared with the unprocessed material, while TCP-treated Ti-5Al-2.5Fe shows greater fracture toughness compared with the unprocessed material. The BTH treatment results in a improvement in fatigue strength in both Ti-6Al-4V and Ti-5Al-2.5Fe.  相似文献   

16.
Martensitic stainless steel (403SS) is extensively used for intermediate and low-pressure steam turbine blades in fossil-fuel power plants. The purpose of this investigation is to study the repair of shallow cracks on the surface of 403SS steam turbine blades by infrared repair brazing using rapid thermal cycles. A nickel-based braze alloy (NICROBRAZ LM) is used as filler metal. The braze alloy after brazing is primarily comprised of borides and an FeNi3 matrix with different amounts of alloying elements, especially B and Si. As the brazing temperature increases, more Fe atoms are dissolved into the molten braze. Some boron atoms diffuse into the 403SS substrate primarily via grain boundary diffusion and form B-Cr-Fe intermetallic precipitates along the grain boundaries. The LM filler metal demonstrates better performance than 403SS in both microhardness and wear tests. It is also noted that specimens brazed in a vacuum have less porosity than those brazed in an Ar atmosphere. The shear strength of the joint is around 300 MPa except for specimens brazed in short time periods, e.g., 5 seconds in Ar flow and 30 seconds in vacuum. The fractographs mainly consist of brittle fractures and no ductile dimple fractures observed in the scanning electron microscope (SEM) examination.  相似文献   

17.
Ti-6A14V合金表面改性技术   总被引:1,自引:0,他引:1  
Ti-6Al4V合金作为一种重要的钛合金,其使用量占到了钛合金总使用量的75%~85%,但其耐磨性差、阻燃性差、疏水疏冰性能差、生物相容性不理想等性能缺陷在一定程度上限制了其在某些领域中的应用。首先对Ti-6Al4V合金在各个领域应用时,其性能缺陷的表现形式及危害进行了概述,然后介绍了目前改善Ti-6Al4V合金性能缺陷所普遍采用的以及具有创新性的表面改性技术,评述了部分表面改性技术的优缺点,最后提出了需对Ti-6Al4V合金表面改性技术进一步研究的方向。  相似文献   

18.
A commercial Ti−6Al−4V alloy with an equiaxed grain shape was investigated after solution annealing at 810°C and after aging at 550 and 350°C. Age hardening at both temperatures produced significant increases in Young's modulus and yield strength. Finely dispersed α2(Ti3Al) precipitates formed within the α phase upon aging at 550°C, but not when aging at 350°C. However, there is evidence of order, probably of oxygen, in the α grains of specimens which were aged at 350°C. The formation of the ordered Ti3Al precipitates at 550°C and the occurrence of oxygen ordering at 350°C can account for the increases in Young's modulus and yield strength. since January 1977 with General Electric Co., Lighting Research Division, Nela Park, Cleveland, OH. KANAY GAZIOGLU, formerly with DFVLR, is deceased.  相似文献   

19.
This study investigates the effect of plasma nitriding parameters on corrosion susceptibility of 17-4 PH stainless steel in 3.5?wt-% NaCl solution. In this regard, 17-4 PH stainless steel was plasma nitrided at 400°C for 5 and 10?h, 450°C for 5?h and 500°C for 5?h. Cross-sectional images after nitriding process showed that a uniform nitrided layer has been formed on steel substrate. Depending on the temperature and time of the nitriding process, different phases were formed in the nitrided layer. This affected general corrosion and pitting corrosion performance of 17-4 PH stainless steel in 3.5?wt-% NaCl solution. While precipitation of chromium nitrides for nitrided specimens at 450°C and higher increased the susceptibility to pitting and general corrosion, formation of expanded martensite (EM) in nitriding at 400°C improved the pitting corrosion resistance of 17-4 PH stainless steel. This is believed to be due to the release of nitrogen atoms from EM phase to form ammonium ions and increase the pH of the solution, supressing pit growth.  相似文献   

20.
We have examined the effect of surface processing in air, using excimer laser light at 248 nm wavelength, on the oxygen content, microstructure, and surface hardness of Ti-6Al-4V. Processing with a single pulse results in the transformation of theα +β material toα′ martensite. Multiple pulse processing results in rapid incorporation of oxygen in the material. Oxygen initially dissolves in the material in the liquid phase. As the concentration exceeds the solid solubility limit during solidification, TiO particles precipitate. In contrast to equilibrium oxidation processes in Ti, only TiO is observed as an oxidation product; further processing results in increased oxygen incorporation and an increased volume fraction of TiO but no other oxides of Ti. The TiO particle size is a function of the oxygen concentration and the number of pulses, with some grain growth occurring after many pulses. The effects of solution hardening by dissolved oxygen and precipitation hardening by the TiO are identifiable as functions of oxygen concentration and mean free path between particles, respectively. A maximum surface hardness almost twice that of electropolished Ti-6Al-4V is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号