首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A method for preparing nondecalcified bone and tooth specimens for imaging by both light microscopy (LM) and backscattered electron microscopy in the scanning electron microscope (BSE-SEM) is presented. Bone blocks are embedded in a polymethylmethacrylate (PMMA) mixture and mounted on glass slides using components of a light-cured dental adhesive system. This method of slide preparation allows correlative studies to be carried out between different microscopy modes, using the same histologic section. It also represents a large time savings relative to other mounting methods whose media require long cure times.  相似文献   

2.
Confocal microscopy imaging of cells allows to visualize the presence of specific antigens by using fluorescent tags or fluorescent proteins, with resolution of few hundreds of nanometers, providing their localization in a large field‐of‐view and the understanding of their cellular function. Conversely, in scanning electron microscopy (SEM), the surface morphology of cells is imaged down to nanometer scale using secondary electrons. Combining both imaging techniques have brought to the correlative light and electron microscopy, contributing to investigate the existing relationships between biological surface structures and functions. Furthermore, in SEM, backscattered electrons (BSE) can image local compositional differences, like those due to nanosized gold particles labeling cellular surface antigens. To perform SEM imaging of cells, they could be grown on conducting substrates, but obtaining images of limited quality. Alternatively, they could be rendered electrically conductive, coating them with a thin metal layer. However, when BSE are collected to detect gold‐labeled surface antigens, heavy metals cannot be used as coating material, as they would mask the BSE signal produced by the markers. Cell surface could be then coated with a thin layer of chromium, but this results in a loss of conductivity due to the fast chromium oxidation, if the samples come in contact with air. In order to overcome these major limitations, a thin layer of indium‐tin‐oxide was deposited by ion‐sputtering on gold‐decorated HeLa cells and neurons. Indium‐tin‐oxide was able to provide stable electrical conductivity and preservation of the BSE signal coming from the gold‐conjugated markers. Microsc. Res. Tech. 78:433–443, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
In this paper, the Rapid Transfer System (RTS), an attachment to the Leica EMPACT2 high‐pressure freezer, is described as a new tool for special applications within the cryofixation field. The RTS is an automated system that allows for fast processing of samples (<5 s) that make it possible for the first time to use high‐pressure freezing in combination with high time resolution correlative light and electron microscopy. In addition, with a working cycle of 30 s this rapid turn over time allows one to acquire more samples of biopsy material before it deteriorates than with other HPF machines with longer cycle times. With the use of the RTS it was possible to obtain three samples each of four different tissues in 6 min. Together with the finding that 90% of samples of cells grown on sapphire discs were well frozen, the RTS was both fast and reliable. Most important, together with other newly developed accessories, the RTS made it possible to capture specific events occurring live in the cell as observed by light microscopy, to cryofix that sample/event within 4 s, and then to analyze that event at high resolution in the electron microscope with excellent preservation of ultra‐structure. These developments should give us the tools to unravel intracellular processes that can be observed by live cell imaging but are too rare or fast to be picked up by routine EM methods or where the history of a structure is necessary to be able to discern its nature.  相似文献   

4.
5.
Correlative microscopy is a collection of procedures that rely upon two or more imaging modalities to examine the same specimen. The imaging modalities employed should each provide unique information and the combined correlative data should be more information rich than that obtained by any of the imaging methods alone. Currently the most common form of correlative microscopy combines fluorescence and electron microscopy. While much of the correlative microscopy in the literature is derived from studies of model cell culture systems we have focused, primarily, on correlative microscopy in tissue samples. The use of tissue, particularly human tissue, may add constraints not encountered in cell culture systems. Ultrathin cryosections, typically used for immunoelectron microscopy, have served as the substrate for correlative fluorescence and electron microscopic immunolocalization in our studies. In this work, we have employed the bifunctional reporter FluoroNanogold. This labeling reagent contains both a fluorochrome and a gold-cluster compound and can be imaged by sequential fluorescence and electron microscopy. This approach permits the examination of exactly the same sub-cellular structures in both fluorescence and electron microscopy with a high level of spatial resolution.  相似文献   

6.
Elucidating the structure and dynamics of lamellipodia and filopodia in response to different stimuli is a topic of continuing interest in cancer cells as these structures may be attractive targets for therapeutic purposes. Interestingly, a close functional relationship between these actin-rich protrusions and specialized membrane domains has been recently demonstrated. The aim of this study was therefore to investigate the fine organization of these actin-rich structures and examine how they structurally may relate to detergent-resistant membrane (DRM) domains in the MTLn3 EGF/serum starvation model. For this reason, we designed a straightforward and alternative method to study cytoskeleton arrays and their associated structures by means of correlative fluorescence (/laser)- and electron microscopy (CFEM).
  CFEM on whole mounted breast cancer cells revealed that a lamellipodium is composed of an intricate filamentous actin web organized in various patterns after different treatments. Both actin dots and DRM's were resolved, and were closely interconnected with the surrounding cytoskeleton. Long actin filaments were repeatedly observed extending beyond the leading edge and their density and length varied after different treatments. Furthermore, CFEM also allowed us to demonstrate the close structural association of DRMs with the cytoskeleton in general and the filamentous/dot-like structural complexes in particular, suggesting that they are all functionally linked and consequently may regulate the cell's fingertip dynamics. Finally, electron tomographic modelling on the same CFEM samples confirmed that these extensions are clearly embedded within the cytoskeletal matrix of the lamellipodium.  相似文献   

7.
The Purkinje cell and their synaptic contacts have been described using (1) light microsocopy, (2) transmission and scanning electron microscopy, and freeze etching technique, (3) conventional and field emission scanning electron microscopy and cryofracture methods, (4) confocal laser scanning microscopy using intravital stain FM64, and (5) immunocytochemical techniques for Synapsin-I, PSD9-5, GluR1 subunit of AMPA receptors, N-cadherin, and CamKII alpha. The outer surface and inner content of plasma membrane, cell organelles, cytoskeleton, nucleus, dendritic and axonal processes have been exposed and analyzed in a three-dimensional view. The intramembrane morphology, in bi- and three-dimensional views, and immunocytochemical labeling of synaptic contacts with parallel and climbing fibers, basket and stellate cell axons have been characterized. Freeze etching technique, field emission scanning microscopy and cryofracture methods, and GluR1 immunohistochemistry showed the morphology and localization of postsynaptic receptors. Purkinje cell shows N-cadherin and CamKII alpha immunoreactivity. The correlative microscopy approach provides a deeper understanding of structure and function of the Purkinje cell, a new three-dimensional outer and inner vision, a more detailed study of afferent and intrinsic synaptic junctions, and of intracortical circuits.  相似文献   

8.
Correlative light and electron microscopy (CLEM) has recently gained increasing attention, because it enables the acquisition of dynamic as well as ultrastructural information about subcellular processes. It is the power of combining the two imaging modalities that gives additional information as compared to using the imaging techniques separately. Here, we briefly summarize two CLEM approaches for the analysis of cells in mitosis and cytokinesis.  相似文献   

9.
10.
A correlative morphologic analysis was carried out on isolated metaphase chromosomes by means of field emission in-lens scanning electron microscopy (FEISEM) and atomic force microscopy (AFM). Whereas FEISEM provides ultra-high resolution power and allows the surface analysis of biological structures free of any conductive coating, the AFM allows imaging of biological specimens in ambient as well as in physiologic conditions. The analysis of the same samples was made possible by the use of electrical conductive and light transparent ITO glass as specimen holder. Further preparation of the specimen specific for the instrumentation was not required. Both techniques show a high correlation of the respective morphologic information, improving their reciprocal biological significance. In particular, the biological coat represents a barrier for surface morphologic analysis of chromosome spreads and it is sensitive to protease treatment. The chemical removal of this layer permits high-resolution imaging of the chromatid fibers but at the same time alters the chromosomal dimension after rehydration. The high-resolution level, necessary to obtain a precise physical mapping of the genome that the new instruments such as FEISEM and AFM could offer, requires homogeneously cleaned samples with a high grade of reproducibility. A correlative microscopical approach that utilizes completely different physical probes provides complementary useful information for the understanding of the biological, chemical, and physical characteristics of the samples and can be applied to optimize the chromosome preparations for further improvement of the knowledge about spatial genome organization.  相似文献   

11.
Integrated array tomography combines fluorescence and electron imaging of ultrathin sections in one microscope, and enables accurate high‐resolution correlation of fluorescent proteins to cell organelles and membranes. Large numbers of serial sections can be imaged sequentially to produce aligned volumes from both imaging modalities, thus producing enormous amounts of data that must be handled and processed using novel techniques. Here, we present a scheme for automated detection of fluorescent cells within thin resin sections, which could then be used to drive automated electron image acquisition from target regions via ‘smart tracking’. The aim of this work is to aid in optimization of the data acquisition process through automation, freeing the operator to work on other tasks and speeding up the process, while reducing data rates by only acquiring images from regions of interest. This new method is shown to be robust against noise and able to deal with regions of low fluorescence.  相似文献   

12.
Fluorescence light microscopy (LM) has many advantages for the study of cell organization. Specimen preparation is easy and relatively inexpensive, and the use of appropriate tags gives scientists the ability to visualize specific proteins of interest. LM is, however, limited in resolution, so when one is interested in ultrastructure, one must turn to electron microscopy (EM), even though this method presents problems of its own. The biggest difficulty with cellular EM is its limited utility in localizing macromolecules of interest while retaining good structural preservation. We have built a cryo-light microscope stage that allows us to generate LM images of vitreous samples prepared for cryo-EM. Correlative LM and EM allows one to find areas of particular interest by using fluorescent proteins or vital dyes as markers within vitrified samples. Once located, the sample can be placed in the EM for further study at higher resolution. An additional benefit of the cryo-LM stage is that photobleaching is slower at cryogenic temperatures (−140°C) than at room temperature.  相似文献   

13.
Inner surfaces and fracture faces of rabbit kidney tissue were investigated with high-resolution scanning electron microscopy using two different cryopreparation techniques: (i) for the observation of fracture faces, cryofixed tissue was fractured and coated in a cryopreparation chamber dedicated to SEM, vacuum transferred onto a cold stage and observed in the frozen-hydrated state; (ii) for the observation of inner surfaces of the nephron, water was removed after freezing and fracturing by freeze substitution and critical-point drying of the tissue. By both methods, macromolecular structures such as intramembranous particles on fracture faces and particles on inner surfaces were imaged. The latter method was used to investigate in more detail surface structures of cells in the cortical collecting duct. These studies revealed a heterogeneity of intercalated cells not described thus far.  相似文献   

14.
In this paper, we present a new experimental methodology to combine mass spectrometry (NanoSIMS) with fluorescence microscopy to provide subcellular information on the location of small molecules in cultured cells. We demonstrate this by comparing the distribution of 5-bromo-2-deoxyuridine in the same cells given by both NanoSIMS analysis and by fluorescence immunohistochemistry. Fiducial markers in the substrates ensured that the images formed by SIMS mapping of bromine ions could be co-registered exactly with images from fluorescence microscopy. The NanoSIMS was shown to faithfully reproduce the information from fluorescence microscopy, but at a much higher spatial resolution. We then show preliminary SIMS images on the distribution of ATN-224, a therapeutic copper chelator for which there is no fluorescent marker, co-registered with conventional Lysotracker and Hoechst stains on the same cells.  相似文献   

15.
Now‐a‐days, plant species are consumed globally for various purposes and this increasing demand leads to adulteration due to gradually exploitation in natural resources. The major causes of adulteration may be confusion in nomenclature, unawareness of authentic sources, unavailability of authentic sources, color resemblances, deficiencies in collection procedures, and misidentification. This study aims to use the microscopic techniques such as scanning electron microscopy for the authentication of the oil yielding seeds of four important and traditionally used species Prunus persica, Prunus domestica, and Eruca sativa and Argemone Mexicana from their adulterants. All of these are versatile in usage. Locally, these four plants are adulterated badly and there is need to provide a criteria and a complete monograph for correct identification. This research may prove to be helpful for quality control and as well for future studies to explore other novel aspects of these plants.  相似文献   

16.
A simple inexpensive grid system reproduced photographically on black-and-white film provides a support system that allows the same cells to be examined by light and scanning electron microscopy.  相似文献   

17.
A survey of methods combining light microscopy and scanning electron microscopy is presented. A simple correlation is made when two preparations from adjacent parts of one specimen are investigated in two different microscopes. A more sophisticated method is the consecutive investigation of one specimen with two microscopes. A major problem in this method is the relocation of the area of interest. Several authors have presented solutions for this problem. It is preferable when one preparation is investigated in only one instrument, combining the two microscopical (LM and SEM) techniques, thus making relocation redundant.  相似文献   

18.
We report here a new microscopic technique for imaging and identifying sedimentary organic matter in geologic materials that combines inverted fluorescence microscopy with scanning electron microscopy and allows for sequential imaging of the same region of interest without transferring the sample between instruments. This integrated correlative light and electron microscopy technique is demonstrated with observations from an immature lacustrine oil shale from the Eocene Green River Mahogany Zone and mid‐oil window paralic shale from the Upper Cretaceous Tuscaloosa Group. This technique has the potential to allow for identification and characterization of organic matter in shale hydrocarbon reservoirs that is not possible using either light or electron microscopy alone, and may be applied to understanding the organic matter type and thermal regime in which organic nanoporosity forms, thereby reducing uncertainty in the estimation of undiscovered hydrocarbon resources.  相似文献   

19.
Freezing of bulk biological objects was investigated by X-ray cryodiffraction. Freezing at atmospheric pressure of most microscopic biological samples gives rise to large hexagonal crystals and leads to poor structural preservation of these specimens. High-pressure freezing induces the formation of different ices (hexagonal, cubic and a high-pressure form) consisting of crystals having sizes smaller than those formed at atmospheric pressure. With both freezing methods, a cryoprotectant has to be added to the biological object to avoid the formation of ice crystals. However, special cases can be encountered: some biological objects contain large amounts of natural cryoprotectant or have a low water content. In these cases, vitrification can be achieved, especially using high-pressure freezing. Cryo-sectioning can be performed on vitrified samples, and the sections studied by electron cryomicroscopy. Images and electron diffraction patterns having a resolution better than 2 and 0.2 nm, respectively, can be obtained with such sections. Because samples containing crystalline ices cannot be cryosectioned, their structure has to be studied using cryosubstitution and resin embedding. We show that bacteria, yeast, and ciliate and marine worm elytrum have cellular compartments with an organization that has not been described by classical techniques relying on chemical fixation of the tissues. A high-pressure artefact affecting the Paramecium trichocysts is described. Such artefacts are not general; for example, we show that 70% of high-pressure frozen yeast cells survive successive high-pressure freezing and thawing steps.  相似文献   

20.
H. You  L. Yu 《Scanning》1997,19(6):431-437
Atomic force microscopy (AFM) is a newly developed microscopic technique that offers high-resolution power, less intrusive measurement, and requires little sample pretreatment for elucidating structures of biological materials in three dimensions and in their natural environment. In this study, AFM has been used not only as an imaging technique for examining human hair structure at high resolution, but also as a tool for quantitative assessment of the effect of treatment in 10 mM phosphate buffered saline of pHs 3.0, 7.0, and 11.0 and heating on human hair structure. It is observed that the hair cuticle is a sensitive indicator of external influences on hair structure, and that its height can be used as a parameter for quantitative assessment. The experimental results obtained show that the swelling of hair caused by the incubation in the buffer decreases with the increase of the pH values and that, depending on the duration of heating, the hair undergoes structural expansion and shrinkage. This study demonstrates that AFM can be used as a valuable alternative to conventional microscopic techniques for hair research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号