首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrical discharge machining (EDM) is used as a precision machining method for the electrically conductive hard materials with a soft electrode material. But recently we succeeded to machine on insulating material by EDM. The technology is named as an assisting electrode method. The EDMed surface is covered with the electrical conductive layer during discharge. The layer holds the electrical conductivity during discharge. For micro-EDM, the wear of tool electrode becomes lager ratio than the normal machining. So the micro-machining is extremely difficult to get the precision sample.

In this paper to obtain a fine and precise ceramics sample, some trials were carried out considering the EDM conditions, tool electrodes material and assisting electrode materials. Insulating Si3N4 ceramics were used for workpiece. The machining properties were estimated by the removal rate and tool wear ratio. To confirm the change of micro-machining process, the discharge waveforms were observed. The micro-machining of the Ø0.05 mm hole could be machined with the commercial sinking electrical discharge machine.  相似文献   


2.
A new process of machining silicon carbide (SiC) ceramic using end electrical discharge milling is proposed in this paper. The process is able to effectively machine a large surface area on SiC ceramic with good surface quality and low cost. The effects of machining conditions on the material removal rate, electrode wear ratio, and surface roughness have been investigated. The surface microstructures machined by the new process are examined with a scanning electron microscope (SEM), an energy dispersive spectrometer (EDS), and an X-ray diffraction (XRD). The results show that the SiC ceramic is removed by melting, evaporation and thermal spalling, the material from the tool electrode can transfer to the workpiece, and a combination reaction takes place during end electric discharge milling of the SiC ceramic.  相似文献   

3.
以导电胶涂层作为辅助电极、石墨作为工具电极,用实验的方法考察了电火花加工非导电陶瓷SiO2的可行性;证明在正极性加工条件下,石墨电极能增强导电膜生成,提高加工稳定性;并给出了脉冲宽度、加工电流等电参数对加工速度、电极损耗及表面质量等工艺指标的影响规律,得出了一些有益的结论.  相似文献   

4.
Machining of insulating ceramics can be realized in EDM by using the assisting electrode method. After a tool electrode cuts through the assisting electrode, a carbon layer covers the ceramics' surface during EDM. This carbon layer, formed from the decomposition of the hydrocarbon working oil, enhances the ceramics surface's conductivity. In this paper, machining phenomena of insulating ceramics are considered towards practical use in industry. Several kinds of insulating ceramics and assisting electrode materials are investigated under considerations of various machining characteristics; and high speed machining in W-EDM is carried out under conditions of lower tension than usual.  相似文献   

5.
电火花铣削加工工艺与算法研究   总被引:1,自引:1,他引:0  
介绍了电火花铣削加工工艺及其有关计算方法。在大量实验的基础上,研究了微细电火花分层铣削加工,采用电极底面放电方式、电极轨迹规划、电极的损耗及补偿策略和合理选择分层厚度及电极微进给量等关键技术,提高了加工精度和效率。  相似文献   

6.
Technologies for machining advanced insulating ceramics are demanded in many industrial fields. Recently, several insulating ceramics, such as Si3N4, SiC and ZrO2, have been successfully machined by electrical discharge machining (EDM). As unstable discharges occur during the machining of Al2O3 ceramics, inferior machining properties have been obtained. The formation mechanism of the electrical conductive layer on the EDMed surface is much different as compared to other ceramics. In addition to this, the electrically conductive layers are not formed sufficiently to adhere to the EDMed workpiece surface and keep a stable and continuous discharge generation on the ceramics. Graphite is widely used as electrode material in EDM. It is expected that carbon from graphite electrode implant and generate a conductive layer. Copper, graphite (Poco EDM-3) and copper-infiltrated-graphite (Poco EDM-C3) electrodes were used to compare the effects of generation of a conductive layer on alumina corresponding to EDM properties. The electrical discharge machining of 95% pure alumina shows that the EDM-C3 performs very well, giving significantly higher material removal rate (MRR) and lower electrode wear ratio than the EDM-3 and copper electrodes. The value of MRR was found to increase by 60% for EDM-3 with positive electrode polarity. As for EDM-C3, MRR was increased by 80% under the same condition. When the results were investigated with energy dispersive spectroscopy (EDS), no element of copper was observed on the conductive layer with both EDM-3 and EDM-C3. However, surface resistivity of a conductive layer created with EDM-C3 is less than with EDM-3. Surface roughness was improved to 25 μm with positive polarity of EDM-C3.  相似文献   

7.
In recant years, surface modification of metals and machining of insulating ceramics by electrical discharge machining (EDM) have been successfully carried out. In surface modification by EDM with semi-sintered electrodes, worn substances in the gap region form the material source of the layer generated on the work-piece surface. In the machining of insulating ceramics by EDM, a crystallized carbon layer or carbide layer from the working oil covers the surface of the insulator. Increase in the thickness of the generated layer, however, tends to stop at a certain maximum value in both surface modification by EDM with semi-sintered electrodes and machining of insulating ceramics by EDM processes. In these machining operations, accretion and removal phenomena occur alternately. In this paper, the mechanisms of machining insulators and the accretion process are discussed considering the characteristics of the generated layers on the work-piece surface.  相似文献   

8.
A new gap control strategy for five-axis milling using near-dry electrical discharge machining (EDM) has been experimentally investigated. The conventional EDM control strategy only allows the retraction of the electrode in the direction of machining trajectory, which results in inefficient gap control when the electrode is not perpendicular to the workpiece. The new gap controller is capable of retracting the electrode in the direction of its orientation. This enables more efficient enlargement of the discharge gap leading to faster recovery of average gap voltage. Experimental results show a 30% increase in material removal rate while the tool electrode wear ratio and surface roughness are not affected. Furthermore, EDM efficiency is improved due to the change in the electrode retraction in its axial direction. The gain tuning of the proposed controller is also discussed. This study shows the direction of electrode retraction is important for five-axis near-dry EDM milling.  相似文献   

9.
Laser-assisted machining (LAM), an alternative method of fabricating difficult-to-machine materials, uses primarily laser power to heat the local area (without necessarily evaporating or melting any material) before the material is removed. It not only efficiently reduces the cutting force during the manufacturing process but also improves the machining characteristics and geography with regard to difficult-to-machine materials, especially structural ceramics.This study on the application of laser-assisted machining to Al2O3 ceramics examines the measurements of cutting force and workpiece surface temperature as well as surface integrity and tool wear. Specifically, it uses the lattice Boltzmann method (LBM) to calculate the temperature distribution inside the ceramic workpiece during the LAM process and ensure that the laser energy causes no subsurface damage. The experimental results reveal that the LAM process efficiently reduces the cutting force by 22% (feed force) and 20% (thrust force) and produces better workpiece surface quality than conventional planing.  相似文献   

10.
应用田口-灰关联法对Inconel 718微放电铣削多重质量特性如电极消耗率、材料去除率和扩口量进行最佳化,分析放电电流、脉冲时间、休止时间和极间间隙对加工Inconel 718之电极消耗率、材料去除率和扩口量的影响。实验结果表明,以最佳微放电铣削参数进行加工,其电极消耗率由5.6×10-9mm3/min降低到5.2×10-9mm3/min,材料去除率由0.47×10-8mm3/min增加到1.68×10-8mm3/min,扩口量由1.27μm降低到1.19μm。研究结果显示,应用田口-灰关联法,可以改善微放电铣削多重质量特性。  相似文献   

11.
Electric discharge machining (EDM) has been proven as an alternate process for machining complex and intricate shapes from the conductive ceramic composites. The performance and reliability of electrical discharge machined ceramic composite components are influenced by strength degradation due to EDM-induced damage. The success of electric discharge machined components in real applications relies on the understanding of material removal mechanisms and the relationship between the EDM parameters and formation of surface and subsurface damages. This paper presents a detailed investigation of machining characteristics, surface integrity and material removal mechanisms of advanced ceramic composite Al2O3–SiCw–TiC with EDM. The surface and subsurface damages have also been assessed and characterized using scanning electron microscopy (SEM). The results provide valuable insight into the dependence of damage and the mechanisms of material removal on EDM conditions.  相似文献   

12.
在微细电火花加工过程中,对电极进行定长补偿是保证加工精度的有效方法之一。当使用空心电极进行定长补偿电火花铣削时,电极会形成稳定的圆台形端部。提出了基于圆台形端部定长补偿的数学模型,通过实验观测分析圆台形端部的形成过程,并验证了该方法下的加工稳定性。在电极直径及电参数不变的情况下,研究了补偿长度与加工深度、工件横截面斜角的关系,进一步对模型进行了实验验证。最后进行了实例加工并获得了较好的加工效果。  相似文献   

13.
Owing to its slight conductivity, deionized water has been used as a bi-characteristic fluid to combine micro-EDM and micro-ECM milling in a unique machining process which has been named as SEDCM milling. To attain both electrical discharge and electrochemical reaction during machining, selection of machining parameters such as feedrate and layer depth has been empirically observed to be of prime importance. This paper presents an analytical model to identify the critical conditions for transitions of material removal mechanisms in this hybrid machining process. The criteria for three distinct machining modes micro-EDM/SEDCM/micro-ECM milling are determined based on the thickness of material layer that electrochemical reaction could dissolve when the electrode scans over the surface. The critical feedrate for transitions of material removal mechanisms are then predicted using double layer theory, Butler–Volmer equation and Faraday's law of electrolysis. Experimental tests were also performed to validate the proposed model. It has been established that the SEDCM milling is only attained at moderate feedrate. For high feedrate, machining mode is changed to micro-EDM milling alone when the thickness of material layer that electrochemical reaction could dissolve is smaller than the roughness of micro-EDMed surface. On the contrary, for low feedrate, material removal mechanism is converted to pure micro-ECM when the thickness of layer dissolved by electrochemical reaction is higher than the preset layer depth. In addition, it is also found that lower feedrate is required for SEDCM milling when higher layer depth is used because more material needs to be removed by the sparks in every feed.  相似文献   

14.
考虑到工作液对于非导电工程陶瓷双电极同步伺服电火花磨削新工艺的重要性,以氧化铝陶瓷加工为例,通过实验的方法研究了工作液的种类、浓度对材料去除率和加工表面粗糙度的影响规律,给出了实验步骤,并对实验结果进行了理论分析。综合考虑加工效率、加工质量、成本及环保等因素,在自来水中配制5%体积浓度的DX-1乳化液是比较理想的工作液。考虑单一效果,在自来水乳化液加入0.5%质量的聚乙烯醇作工作液可以提高材料去除率10%以上;使用去离子水作工作液可以得到最好的表面质量。  相似文献   

15.
This study focuses on using ultrasonic to improve the efficiency in electrical discharge machining (EDM) in gas medium. The new method is referred to as ultrasonic-assisted electrical discharge machining (UEDM). In the process of UEDM in gas, the tool electrode is a thin-walled pipe, the high-pressure gas medium is applied from inside, and the ultrasonic actuation is applied onto the workpiece. In our experiment, the workpiece material is AISI 1045 steel and the electrode material is copper. The experiment results indicate that (a) the Material Removal Rate (MRR) is increased with respect to the increase of the open voltage, the pulse duration, the amplitude of ultrasonic actuation, the discharge current, and the decrease of the wall thickness of electrode pipe; and (b) the surface roughness is increased with respect to the increase of the open voltage, the pulse duration, and the discharge current. Based on experimental results, a theoretical model to estimate the MRR and the surface roughness is developed.  相似文献   

16.
This research investigates the effects of electrode lead and tilt angles and dielectric fluid flow rate on material removal rate, tool electrode wear ratio, and surface roughness in near-dry electrical discharge machining (EDM) milling process. Computational fluid dynamics (CFD) model is developed to predict the dielectric fluid flow rate and qualitatively compare with the experimentally measured EDM material removal rate. The optimum lead angle, which maximized material removal rate and minimized tool electrode wear ratio, was found. The decrease in the lead angle has a negative effect on the roughness of machined surface. The increase in tilt angle reduces the material removal rate and increases the tool electrode wear ratio. The change in tilt angle does not have a significant effect on the surface roughness and can be used to prevent gouging in finishing EDM milling. This study shows that the material removal rate is linearly proportional to the mass flow rate of air and kerosene mixture, the tool electrode wear ratio is inversely related to the mass flow rate of air and kerosene mixture, and the average surface roughness does not have a good correlation with the flow rate of the mixture.  相似文献   

17.
Real-time Tool Wear Compensation in Milling EDM   总被引:3,自引:0,他引:3  
Accurate machining by milling EDM (i.e. CNC contouring EDM with a rotating cylindrical or tubular electrode) necessitates compensation of the tool electrode wear. Existing anticipated wear compensation is based on off-line tool wear simulation prior to machining. This can be combined with corrections based on periodical measurements of tool length during machining. Anticipated wear compensation involves an important restriction: an exact model of the blank geometry must be available in order to perform the tool wear simulation. This paper presents a new method of wear compensation. On-line estimation of tool wear is used for combining anticipated compensation with real-time compensation. This extends the scope of milling EDM to the machining of blanks of which the exact shape is not known in advance.  相似文献   

18.
This study investigates the feasibility and optimization of electrical discharge machining for inspecting the machinability of W/Cu composites using the Taguchi method. W/Cu composites are a type of cooling material highly resistant to heat corrosion produced through powder metallurgy. As W/Cu composites are highly brittle, they are not suited to be machined of traditional machine manufacturing. This paper utilizes electrical discharge machining, which is thermal processing workpieces and not affected by mechanical properties of materials. This experiment utilizes the Taguchi method and L18 orthogonal table to obtain the polarity, peak current, pulse duration, duty factor, rotary electrode rotational speed, and gap-load voltage in order to explore the material removal rate, electrode wear rate, and surface roughness. The influence of each variable and optimal processing parameter will be obtained through ANOVA analysis and verified through experimentation to improve the process. The final step is to study the surface integrities of W/Cu composite, such as surface profile and heat-affected zone, the energy distribution transferring phenomenon of W/Cu composite, and the discharge phenomenon of tungsten and copper elements with electrical discharge machining.  相似文献   

19.
In this paper a new approach for the optimization of the electrical discharge machining (EDM) process with multiple performance characteristics based on the orthogonal array with the grey relational analysis has been studied. A grey relational grade obtained from the grey relational analysis is used to solve the EDM process with the multiple performance characteristics. Optimal machining parameters can then be determined by the grey relational grade as the performance index. In this study, the machining parameters, namely workpiece polarity, pulse on time, duty factor, open discharge voltage, discharge current, and dielectric fluid are optimized with considerations of multiple performance characteristics including material removal rate, surface roughness, and electrode wear ratio. Experimental results have shown that machining performance in the EDM process can be improved effectively through this approach.  相似文献   

20.
Ultrasonic vibration was applied to dielectric fluid by a probe-type vibrator to assist micro electrical discharge machining of deep micro-holes in ceramic materials. Changes of machined hole depth, hole geometry, surface topography, machining stability and tool material deposition under various machining conditions were investigated. Results show that ultrasonic vibration not only induces stirring effect, but also causes cloud cavitation effect which is helpful for removing debris and preventing tool material deposition on machined surface. The machining characteristics are strongly affected by the vibration amplitude, and the best machining performance is obtained when carbon nanofibers are added into the vibrated dielectric fluid. As test pieces, micro-holes having 10 μm level diameters and high aspect ratios (>20) were successfully fabricated on reaction-bonded silicon carbide in a few minutes. The hybrid EDM process combining ultrasonic cavitation and carbon nanofiber addition is demonstrated to be useful for fabricating microstructures on hard brittle ceramic materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号