首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In many realistic production situations, a job processed later consumes more time than the same job when it is processed earlier. Production scheduling in such an environment is known as scheduling with deteriorating jobs. However, research on scheduling problems with deteriorating jobs has rarely considered explicit (separable) setup time (cost). In this paper, we consider a single-machine scheduling problem with deteriorating jobs and setup times to minimize the maximum tardiness. We provide a branch-and-bound algorithm to solve this problem. Computational experiments show that the algorithm can solve instances up to 1000 jobs in reasonable time.  相似文献   

2.
In this paper, we introduce a group scheduling model with general deteriorating jobs and learning effects in which deteriorating jobs and learning effects are both considered simultaneously. This means that the actual processing time of a job depends not only on the processing time of the jobs already processed, but also on its scheduled position. In our model, the group setup times are general linear functions of their starting times and the jobs in the same group have general position-dependent learning effects and time-dependent deterioration. The objective of scheduling problems is to minimise the makespan and the sum of completion times, respectively. We show that the problems remain solvable in polynomial time under the proposed model.  相似文献   

3.
This paper considers single machine scheduling problems with setup times and deteriorating jobs. The setup times are proportional to the length of the already processed jobs, that is, the setup times are past-sequence-dependent (p-s-d). It is assumed that the job processing times are defined by functions dependent on their starting times. The following objectives are considered: the makespan, the total completion time, and the sum of earliness, tardiness, and due-window starting time and size penalties. We propose polynomial time algorithms to solve these problems.  相似文献   

4.
A two-machine flowshop makespan scheduling problem with deteriorating jobs   总被引:2,自引:0,他引:2  
In traditional scheduling problems, the job processing times are assumed to be known and fixed from the first job to be processed to the last job to be completed. However, in many realistic situations, a job will consume more time than it would have consumed if it had begun earlier. This phenomenon is known as deteriorating jobs. In the science literature, the deteriorating job scheduling problems are relatively unexplored in the flowshop settings. In this paper, we study a two-machine flowshop makespan scheduling problem in which job processing times vary as time passes, i.e. they are assumed as increasing functions of their starting times. First, an exact algorithm is established to solve most of the problems of up to 32 jobs in a reasonable amount of time. Then, three heuristic algorithms are provided to derive the near-optimal solutions. A simulation study is conducted to evaluate the performances of the proposed algorithms. In addition, the impact of the deterioration rate is also investigated.  相似文献   

5.
In recent 10 years, the multi-agent idea applied in scheduling issues has received continuing attention. However, the study of the multi-agent scheduling with deteriorating jobs is relatively limited. In light of this, this paper deliberates upon a two-agent single-machine scheduling problem with deteriorating jobs. Taking the proposed model, the actual processing time of a job from both the first agent and the second agent is modeled as a linearly increasing function of its starting time. The goal of this paper is to minimize the total weighted number of tardy jobs of the first agent subject to the condition that the maximum lateness of the second agent is allowed to have an upper bound. The complexity of the model concerned in the paper is claimed as an NP-hard one. Following that, several dominance rules and a lower bound are proposed to be applied in a branch-and-bound algorithm for the optimal solution, and a tabu algorithm is applied to find near-optimal solutions for the problem. The simulation results obtained from all the proposed algorithms are also reported.  相似文献   

6.
In the paper two resource constrained single-machine group scheduling problems with both learning effects and deteriorating jobs are considered. By learning effects, deteriorating jobs and group technology assumption, we mean that the processing time of a job is defined by the function of its starting time and position in the group, and the group setup times of a group is a positive strictly decreasing continuous function of the amount of consumed resource. We present polynomial solutions for the makespan minimization problem under the constraint that the total resource consumption does not exceed a given limit, and the total resource consumption minimization problem under the constraint that the makespan does not exceed a given limit, respectively.  相似文献   

7.
In this paper we consider a two-machine flow shop scheduling problem with deteriorating jobs. By a deteriorating job we mean that the job's processing time is an increasing function of its starting time. We model job deterioration as a function that is proportional to a linear function of time. The objective is to find a sequence that minimizes the total completion time of the jobs. For the general case, we derive several dominance properties, some lower bounds, and an initial upper bound by using a heuristic algorithm, and apply them to speed up the elimination process of a branch-and-bound algorithm developed to solve the problem.  相似文献   

8.
Recently, interest in scheduling with deteriorating jobs and learning effects has kept growing. However, research in this area has seldom considered setup times. We introduce a new scheduling model in which job deterioration and learning, and setup times are considered simultaneously. In the proposed model, the actual processing time of a job is defined as a function of the setup and processing times of the jobs already processed and the job’s own scheduled position in a sequence. In addition, the setup times are assumed to be proportional to the actual processing times of the already scheduled jobs. We derive polynomial-time optimal solutions for some single-machine problems with or without the presence of certain conditions.  相似文献   

9.
This paper dealt with an unrelated parallel machines scheduling problem with past-sequence-dependent setup times, release dates, deteriorating jobs and learning effects, in which the actual processing time of a job on each machine is given as a function of its starting time, release time and position on the corresponding machine. In addition, the setup time of a job on each machine is proportional to the actual processing times of the already processed jobs on the corresponding machine, i.e., the setup times are past-sequence-dependent (p-s-d). The objective is to determine jointly the jobs assigned to each machine and the order of jobs such that the total machine load is minimized. Since the problem is NP-hard, optimal solution for the instances of realistic size cannot be obtained within a reasonable amount of computational time using exact solution approaches. Hence, an efficient method based on the hybrid particle swarm optimization (PSO) and genetic algorithm (GA), denoted by HPSOGA, is proposed to solve the given problem. In view of the fact that efficiency of the meta-heuristic algorithms is significantly depends on the appropriate design of parameters, the Taguchi method is employed to calibrate and select the optimal levels of parameters. The performance of the proposed method is appraised by comparing its results with GA and PSO with and without local search through computational experiments. The computational results for small sized problems show that the mentioned algorithms are fully effective and viable to generate optimal/near optimal solutions, but when the size of the problem is increased, the HPSOGA obtains better results in comparison with other algorithms.  相似文献   

10.
This paper considers single machine scheduling problems with setup times and deteriorating jobs. The setup times are proportional to the length of the already processed jobs, that is, the setup times are past-sequence-dependent (p-s-d). It is assumed that the job processing times are defined by functions dependent on their starting times. The following objectives are considered: the makespan, the total completion time, and the sum of earliness, tardiness, and due-window starting time and size penalties. We propose polynomial time algorithms to solve these problems.  相似文献   

11.
In this paper we consider the general, no-wait and no-idle permutation flowshop scheduling problem with deteriorating jobs, i.e., jobs whose processing times are increasing functions of their starting times. We assume a linear deterioration function with identical increasing rates for all the jobs and there are some dominating relationships between the machines. We show that the problems to minimize the makespan and the total completion time remain polynomially solvable when deterioration is considered, although these problems are more complicated than their classical counterparts without deterioration.  相似文献   

12.
We present a single-machine problem with the unequal release times under learning effect and deteriorating jobs when the objective is minimizing the makespan. In this study, we introduced a scheduling model with unequal release times in which both job deterioration and learning exist simultaneously. By the effects of learning and deterioration, we mean that the processing time of a job is defined by increasing function of its execution start time and position in the sequence. A branch-and-bound algorithm incorporating with several dominance properties and lower bounds is developed to derive the optimal solution. A heuristic algorithm is proposed to obtain a near-optimal solution. The computational experiments show that the branch-and-bound algorithm can solve instances up to 30 jobs, and the average error percentage of the proposed heuristic is less than 0.16%.  相似文献   

13.
Some scheduling problems with deteriorating jobs and learning effects   总被引:4,自引:0,他引:4  
Although scheduling with deteriorating jobs and learning effect has been widely investigated, scheduling research has seldom considered the two phenomena simultaneously. However, job deterioration and learning co-exist in many realistic scheduling situations. In this paper, we introduce a new scheduling model in which both job deterioration and learning exist simultaneously. The actual processing time of a job depends not only on the processing times of the jobs already processed but also on its scheduled position. For the single-machine case, we derive polynomial-time optimal solutions for the problems to minimize makespan and total completion time. In addition, we show that the problems to minimize total weighted completion time and maximum lateness are polynomially solvable under certain agreeable conditions. For the case of an m-machine permutation flowshop, we present polynomial-time optimal solutions for some special cases of the problems to minimize makespan and total completion time.  相似文献   

14.
Scheduling with deteriorating jobs or learning effects has been widely studied recently. There are situations where both the deterioration and learning effects might exist at the same time. However, the research with the consideration of both the effects is relatively limited. Furthermore, the forms of the effects are specific functions in the literature. In this paper, we introduce a general scheduling model in the sense that the form of the function is unspecified. Under the proposed model, the actual job processing time is a general function on the processing times of the jobs already processed and its scheduled position. The optimal solutions for some single-machine problems are provided.  相似文献   

15.
In this paper, we introduce a new scheduling model in which deteriorating jobs and learning effect are both considered simultaneously. By deterioration and the learning effect, we mean that the actual processing time of a job depends not only on the processing time of the jobs already processed but also on its scheduled position. For the single-machine case, we show that the problems of makespan, total completion time and the sum of the quadratic job completion times remain polynomially solvable, respectively. In addition,we show that the problems to minimize total weighted completion time and maximum lateness are polynomially solvable under certain conditions.  相似文献   

16.
This paper considers single-machine scheduling problems with deteriorating jobs, i.e., jobs whose processing times are an increasing function of their starting times. In addition, the jobs are related by a series–parallel graph. It is shown that for the general linear problem to minimize the makespan, polynomial algorithms exist. It is also shown that for the proportional linear problem of minimization of the total weighted completion time, polynomial algorithms exist, too.  相似文献   

17.
In deteriorating job scheduling problems, most of the researchers assume that the actual job processing time is a function of its starting time. In this paper, we propose a new deterioration model in which the actual job processing time is a general function of the normal processing time of jobs already processed and its scheduled position at the same time. We show that some single-machine scheduling problems remain polynomially solvable.  相似文献   

18.
A scheduling problem with unrelated parallel machines, sequence and machine-dependent setup times, due dates and weighted jobs is considered in this work. A branch-and-bound algorithm (B&B) is developed and a solution provided by the metaheuristic GRASP is used as an upper bound. We also propose a set of instances for this type of problem. The results are compared to the solutions provided by two mixed integer programming models (MIP) with the solver CPLEX 9.0. We carry out computational experiments and the algorithm performs extremely well on instances with up to 30 jobs.  相似文献   

19.
We consider a two-machine re-entrant flowshop scheduling problem in which all jobs must be processed twice on each machine and there are sequence-dependent setup times on the second machine. For the problem with the objective of minimizing total tardiness, we develop dominance properties and a lower bound by extending those for a two-machine re-entrant flowshop problem (without sequence-dependent setup times) as well as heuristic algorithms, and present a branch and bound algorithm in which these dominance properties, lower bound, and heuristics are used. For evaluation of the performance of the branch and bound algorithm and heuristics, computational experiments are performed on randomly generated instances, and results are reported.  相似文献   

20.
In this paper, we consider a two-machine flow shop scheduling problem with deteriorating jobs. By a deteriorating job, we mean that the processing time is a decreasing function of its execution start time. A proportional linear decreasing deterioration function is assumed. The objective is to find a sequence that minimizes total completion time. Optimal solutions are obtained for some special cases. For the general case, several dominance properties and some lower bounds are derived to speed up the elimination process of a branch-and-bound algorithm. A heuristic algorithm is also proposed to overcome the inefficiency of the branch-and-bound algorithm. Computational results for randomly generated problem instances are presented, which show that the heuristic algorithm effectively and efficiently in obtaining near-optimal solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号