共查询到20条相似文献,搜索用时 15 毫秒
1.
Visible-light-response Cr/N-codoped SrTiO3 was prepared by a sol–gel hydrothermal method. The comparison studies indicate that Cr-doped and Cr/N-codoped SrTiO3 can be synthesized by this means, but not the N-doped SrTiO3. The theoretical calculations exhibit the defect formation energy of the Cr/N codoping into SrTiO3 is much smaller than that of the N doping into SrTiO3, illuminating that the incorporation of Cr can promote the N doping into the O sites in the SrTiO3. Compared to the Cr-doped SrTiO3, the Cr/N-codoped SrTiO3 photocatalyst shows the high photocatalytic activities for hydrogen production with the quantum efficiency of 3.1% at 420 nm, due to the smaller band gap and much less vacancy defects. 相似文献
2.
SrTiO3:Rh/Ta powder was prepared by spray pyrolysis from polymeric precursors containing citric acid and ethylene glycol. Co-doping Ta into SrTiO3:Rh increased the presence of Rh3+ in the host material. The retention of balanced charges by the substitution of two Ti4+ ions in the host material by one ion each of Rh3+ and Ta5+ enhanced hydrogen evolution from aqueous methanol solution under visible light irradiation (λ > 415 nm) by 3.5 times (to 531 μmol h−1) and reduced the induction period by 50% (to 1 h), when compared with SrTiO3:Rh. Thorough mixing of the multi-component spray pyrolysis precursor solution resulted in highly dispersed Rh ions and porous photocatalyst particles, which showed enhanced hydrogen evolution rate. 相似文献
3.
Hyun Woo KangSeung Bin Park 《International Journal of Hydrogen Energy》2011,36(16):9496-9504
SrTiO3:Cr/Ta powders were prepared by spray pyrolysis from polymeric precursors. Effects of the amount of co-dopant and additives on the photocatalytic activity for hydrogen evolution from aqueous methanol solution under visible light irradiation (λ > 415 nm) were investigated. For the photocatalyst prepared by spray pyrolysis from polymeric precursor, the hydrogen evolution rate was increased by a factor of ∼100 and induction period was decreased by a factor of 8 compared with a photocatalyst prepared by solid state reaction. These enhancements result from increased roughness of surface, and the compositional uniformity which are intrinsic characteristics of spray pyrolysis. In addition, photocatalyst prepared by spray pyrolysis from polymeric precursor have large BET surface area and small amount of Cr6+ ion which is responsible for long induction period. It should be noted that the reduction of Cr6+ ion was achieved without hydrogen reduction process. 相似文献
4.
A novel visible-light-driven photocatalyst CaIn2S4 was synthesized using a facile hydrothermal method followed by a post-calcination process. The influence of the calcination temperature and time on the activities of the photocatalyst was investigated. CaIn2S4 exhibits optical absorption predominantly in visible region with an optical band gap of 1.76 eV. Considerable activity for hydrogen evolution from pure water was observed without any sacrificial agents or cocatalysts under visible light irradiation. The maximum hydrogen evolution rate achieved was 30.92 μmol g−1 h−1 without obvious deactivation of the photocatalytic activity for four consecutive runs of 32 h. 相似文献
5.
Shao-Wen Cao Yu-Peng Yuan Jun Fang Mohammad Mehdi Shahjamali Freddy Y.C. Boey James Barber Say Chye Joachim Loo Can Xue 《International Journal of Hydrogen Energy》2013
Well dispersed CdS quantum dots were successfully grown in-situ on g-C3N4 nanosheets through a solvothermal method involving dimethyl sulfoxide. The resultant CdS–C3N4 nanocomposites exhibit remarkably higher efficiency for photocatalytic hydrogen evolution under visible light irradiation as compared to pure g-C3N4. The optimal composite with 12 wt% CdS showed a hydrogen evolution rate of 4.494 mmol h−1 g−1, which is more than 115 times higher than that of pure g-C3N4. The enhanced photocatalytic activity induced by the in-situ grown CdS quantum dots is attributed to the interfacial transfer of photogenerated electrons and holes between g-C3N4 and CdS, which leads to effective charge separation on both parts. 相似文献
6.
以TiO2颗粒和三聚氰胺为原料,采用高温煅烧法制备g-C3N4/TiO2复合光催化材料,研究其对仿生生态系统中磺胺类抗生素的去除效果。利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、傅里叶变换红外光谱仪(FTIR)、紫外可见分光光度计(UV-vis DRS)对g-C3N4/TiO2进行表征,并研究在可见光条件下g-C3N4/TiO2对溶液中磺胺甲恶唑(SMX)的光催化降解效果。结果表明,g-C3N4/TiO2具有良好的光催化活性,在可见光照射下,当g-C3N4/TiO2投加量为0.2 g·L-1时,对初始质量浓度为200 μg·L-1的SMX的去除率可达84.3%。在相同条件下,而g-C3N4和TiO2只能分别去除21.0%和16.0%的SMX,同时在仿生系统中12.37 g·m-2 g-C3N4/TiO2可以去除95.35%的SMX。通过质谱分析推测,SMX可能的降解路径分别为S—N键断裂、C—N键断裂、S—C键断裂、SMX的羟基化和SMX上氨基的硝化反应,两种可能的中间产物分别为对氨基苯磺酰胺和3-氨基-5-甲基异恶唑。 相似文献
7.
The electronic structures of pure, mono-doped (either Mo or N), and co-doped (Mo and N) SrTiO3 are calculated by first principles with the Tran-Blaha modified Becke–Johnson potential. Results show that the calculated band gap of SrTiO3 is improved from 1.87 to 3.27 eV by this new method, being in good agreement with the experimental value. Mo and N co-doping can prevent not only the partially occupied states from appearing at the band edge but also the two N atoms coupling. Therefore, the high activity of photocatalysis remains and the band edges are compatible with the redox potentials for water splitting. More importantly, the band gap of the most stable co-doped configuration is sharply narrowed to 2.07 eV. The defect formation energy calculations indicate that the co-doped systems are energetically favorable in Ti-poor and O-rich environments. These show that Mo and N co-doped SrTiO3 should be a good candidate for water splitting using sunlight. 相似文献
8.
Photocatalyst powders of SrTi1−xMoxO3 and Sr1−2xNa2xTi1−xMoxO3 were prepared by spray pyrolysis for hydrogen evolution for the first time from aqueous methanol solution under visible light irradiation. The co-doping of Mo6+/Na+ ions resulted in increase of BET surface area and pore volume, and formation of unique morphology with wrinkled, furrowed and porous surface, without significant distortion of lattice structure of host material. The hydrogen evolution rate of Sr1−2xNa2xTi1−xMoxO3 photocatalyst was enhanced up to 1115.8 μmol g−1 h−1 with an induction period of 1 h under visible light irradiation, which was 1.5 times higher than that of SrTi1−xMoxO3. The co-dopant Na+ ion contributed to the charge balance in the host material by compromising the excess positive charge of Mo6+, which was effective for enhancing the hydrogen evolution rate. The optimum composition of photocatalyst corresponding to the maximum hydrogen evolution rate was Sr1−2xNa2xTi1−xMoxO3 (x = 0.004). 相似文献
9.
Wen Peng Shi-Shen Zhang Yi-Biao Shao Jian-Hua Huang 《International Journal of Hydrogen Energy》2018,43(49):22215-22225
Bimetallic PtNi-decorated graphitic carbon nitride (g-C3N4) nanotubes were prepared through calcining the mixture of urea and thiourea in the presence of Pluronic F127, followed by deposition of bimetallic PtNi nanoparticles (NPs) via chemical reduction. It is found that the photocatalytic activity of PtNi/g-C3N4 nanotubes is strongly dependent on the molar ratio of Pt/Ni and the highest activity is observed for Pt1Ni1/g-C3N4. Under visible light (λ > 420 nm) irradiation, the H2 generation rate over Pt1Ni1/g-C3N4 nanotubes is 104.7 μmol h?1 from a triethanolamine (10 vol%) aqueous solution, which is higher than that of Pt/g-C3N4 nanotubes (98.6 μmol h?1) and is about 47.6 times higher than that of pure g-C3N4 nanotubes. The cyclic photocatalytic reaction indicates that our Pt1Ni1/g-C3N4 nanotubes function as a stable photocatalyst for visible light-driven H2 production. The effect of bimetallic PtNi NPs in the transfer and separation of photogenerated charge carriers occurring in the excited g-C3N4 nanotubes was investigated by performing photo-electrochemical and photoluminescence measurements. Our results reveal that bimetallic PtNi could replace Pt as a promising cocatalyst for photocatalytic H2 evolution with better performance and lower cost. 相似文献
10.
Guangshan Zhang Wen Zhang Peng Wang Daisuke Minakata Yongsheng Chen John Crittenden 《International Journal of Hydrogen Energy》2013
Efficient photocatalytic water-splitting systems require stable photocatalysts that have photocatalytic activity with repeated consecutive use. This study investigated H2 production under visible light irradiation with an Ru/(CuAg)0.15In0.3Zn1.4S2 photocatalyst and KI as an electron donor. In addition, the stability and reusability of the catalyst were evaluated over multiple cycles of H2 production and catalyst regeneration. The results show that sintering temperature influenced the crystallinity and photocatalytic activity, as indicated by the X-ray diffraction analyses and H2 production rates. In particular, the catalyst sintered at 873 K yielded the highest quantum yield of 4.6% at 420 ± 5 nm of wavelength. After seven consecutive reaction cycles, the quantum yield decreased from 4.6% to 3.0% at the end of the seventh cycle. The decrease probably occurred because (1) particles of the catalyst underwent pronounced aggregation, which led to the increase in particle size; and (2) a release of significant metal ions was observed during H2 production, which led to a loss of the catalyst mass and potential changes in the photocatalytic activity. This study will help facilitate a search of stable photocatalysts for water splitting. 相似文献
11.
Amaresh C. PradhanSatyabadi Martha S.K. MahantaK.M. Parida 《International Journal of Hydrogen Energy》2011,36(20):12753-12760
The iron incorporated mesoporous Al2O3-MCM-41 nanocomposites, synthesized by sol-gel and followed by wetness impregnation method, were found to be active photocatalysts for evolution of hydrogen energy from water in the presence of sacrificial agent under visible light illumination (λ ≥ 400 nm). The key factors for water splitting are appropriate band gap energy, small particle size, high surface area and mesoporosity nature. The DRUV-vis spectra measured the band gap energy where as the particle sizes of the materials were evaluated by TEM. Beside these, the materials were characterized by small angle XRD, N2 adsorption-desorption, FTIR and XPS. Moreover, among mesoporous support and mesoporous nanocomposites, 5Fe/Al2O3-MCM-41 exhibited highest water splitting ability and produced 146 μmol/h hydrogen gas with apparent quantum efficiency 6.1%. The textural properties (high surface area, narrow pore size, large pore volume and mesoporosity), visible light active band gap energy 1.90 eV and small particle size (47.95 nm) collectively contribute for high hydrogen production ability of 5Fe/Al2O3-MCM-41. 相似文献
12.
Haipei Liu Kai ZhangDengwei Jing Guanjie LiuLiejin Guo 《International Journal of Hydrogen Energy》2010
In this paper a novel SrS/CdS composite powders were prepared by coprecipitation method. The physicochemical properties of the photocatalysts were analyzed by XRD, UV–Vis, BET, PL and SEM. Photocatalytic hydrogen production results showed that these composite powders can work efficiently under visible light without loading noble metal, and it was found that the ratio of SrS/CdS equaling to 2/8 has the best performance among various SrS/CdS composite powders, and the hydrogen evolution rate amounted to 123 μmol/h under visible light irradiation. The apparent quantum yield for this photocalyst was calculated to be 2.85%, 4.59%, 9.63% at 420 nm, 440 nm and 480 nm respectively, and the apparent quantum yield under visible light was 5.83%. The reason for its high activity was analyzed. 相似文献
13.
Development of copper-doped TiO2 photocatalyst for hydrogen production under visible light 总被引:1,自引:0,他引:1
The advantage of copper doping onto TiO2 semiconductor photocatalyst for enhanced hydrogen generation under irradiation at the visible range of the electromagnetic spectrum has been investigated. Two methods of preparation for the copper-doped catalyst were selected – complex precipitation and wet impregnation methods – using copper nitrate trihydrate as the starting material. The dopant loading varied from 2 to 15%. Characterization of the photocatalysts was done by thermogravimetric analysis (TGA), temperature programmed reduction (TPR), diffuse reflectance UV-Vis (DR-UV-Vis), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). Photocatalytic activity towards hydrogen generation from water was investigated using a multiport photocatalytic reactor under visible light illumination with methanol added as a hole scavenger. Three calcination temperatures were selected – 300, 400 and 500 °C. It was found that 10 wt.% Cu/TiO2 calcined at 300 °C for 30 min yielded the maximum quantity of hydrogen. The reduction of band gap as a result of doping was estimated and the influence of the process parameters on catalytic activity is explained. 相似文献
14.
Tri-doped photocatalyst, SrTiO3:Ni/Ta/La, was prepared by spray pyrolysis from aqueous and polymeric precursor solutions. The third dopant, La3+, contributed to the BET surface area and porous morphology by preventing crystal growth, and increased the Ni2+/Ni3+ ratio by affecting the electron configuration in the lattice structure, which is closely related to the hydrogen evolution rate. The hydrogen evolution rate of the tri-doped photocatalyst, SrTiO3:Ni(0.2 mol%)/Ta(0.4 mol%)/La(0.3 mol%), was increased by about 60%–895.2 μmol g−1 h−1 from the value of 561.2 μmol g−1 h−1 for the co-doped photocatalyst, SrTiO3:Ni(0.2 mol%)/Ta(0.4 mol%), and was further enhanced to 2305.7 μmol g−1 h−1 when a polymeric precursor was used instead of an aqueous precursor in spray pyrolysis. The optimum additive content for polymeric precursor solution was 300 mol%. 相似文献
15.
Andrea Speltini Andrea Scalabrini Federica Maraschi Michela Sturini Ambra Pisanu Lorenzo Malavasi Antonella Profumo 《International Journal of Hydrogen Energy》2018,43(32):14925-14933
Chemically modified g-C3N4 for the photocatalytic H2 evolution from water was explored. Bulk g-C3N4 was treated in hot HNO3 aqueous solution to obtain the oxidized material (o-g-C3N4), tested in water containing glucose as model water-soluble sacrificial biomass, using Pt as co-catalyst, under simulated solar light. The behaviour of o-g-C3N4 was studied in relation with catalyst amount, Pt loading, glucose concentration. Results showed that H2 production is favoured by increasing glucose concentration up to 0.1 M and Pt loading up to 3 wt%, and it resulted strongly enhanced using small amount of o-g-C3N4 (0.25 g L?1). o-g-C3N4 possesses superior photocatalytic activity (~26-fold higher) compared to pristine g-C3N4, with H2 evolution further improved by ultrasound-assisted exfoliation and evolution rates up to ca. 1370 μmol h?1 per gram of catalyst, with excellent reproducibility (RSD < 6%, n = 3). Significant production was observed also in river water and seawater, with results far better (up to ca. 2500 μmol g?1 h?1) compared to commercial AEROXIDE® P25 TiO2 under natural solar light. 相似文献
16.
A photocatalyst composed of graphite-like carbon nitride (g-C3N4) and TiO2 was fabricated by a simple method to calcine the mixture of melamine and TiO2 precursor. The photocatalyst has enhanced photoactivity for hydrogen evolution from water. Characterization by XRD, FTIR, SEM and elemental analysis showed that the crystal structure and morphologies of composites were affected by the amount of melamine in the composite. The UV–Vis characterization displayed that the optical absorption range of g-C3N4/TiO2 hybrid was broadened with a synergistic effect. The photoactivity for H2 evolution was shown that the best result obtained from the composite with 67 wt% melamine has about 5 times improvement compared with bare TiO2 or pure g-C3N4. The enhanced photoactivity might be related with the favorable structure resulted from heat-treatment temperature, and the content of g-C3N4 participating in wide optical absorption, separation and transportation of electronic-holes, as well as morphology of composite. 相似文献
17.
Two photocatalysts, SrTiO3:Ni/La and SrTiO3:Ni/Ta, were prepared by continuous spray pyrolysis. The effects of the co-dopants on hydrogen evolution over the uncalcined photocatalysts were evaluated under visible light irradiation. The co-doping of La3+ into SrTiO3:Ni transformed the charge structure and increased the presence of Ni2+ at the expense of Ni3+ in the host lattice structure. The co-doping of Ta5+ into SrTiO3:Ni also increased the Ni2+/Ni3+ ratio around the Ti4+ ions. Compared with SrTiO3:Ni, SrTiO3:Ni/La showed a 3 times greater rate of hydrogen evolution under visible light irradiation and SrTiO3:Ni/Ta, a 4 times greater rate. The co-doping levels required for optimized hydrogen evolution over SrTiO3:Ni/La and SrTiO3:Ni/Ta prepared by spray pyrolysis were smaller than those prepared by other methods. Spray pyrolysis also produced particles with large surface areas and high roughnesses. 相似文献
18.
Hyun Woo Kang Sung Nam Lim Seung Bin Park Ah-Hyung Alissa Park 《International Journal of Hydrogen Energy》2013
Photocatalysts of Na1−xLaxTa1−xCrxO3 and NaTa1−xCrxO3 were prepared by spray pyrolysis from aqueous and polymeric precursor solution. Apart from the contribution of La3+ ions co-doped into NaTa1−xCrxO3 on the BET surface area and the surface morphology by preventing crystal growth, this co-doping contributed to the increased Cr3+ concentration by partially tuning the electron configuration from A+B5+O3 to (A+A′3+)2+(B5+B′3+)4+O3 in the lattice of the photocatalyst. Na1−xLaxTa1−xCrxO3 prepared from polymeric precursor solution reduced the induction period to 33% and enhanced the hydrogen evolution rate 5.6-fold to 1467.5 μmol g−1 h−1 compared with the equivalent values of NaTa1−xCrxO3 prepared from aqueous precursor. The optimum amounts of dopant and additives comprising the polymeric precursor to maximize the hydrogen evolution rate were x = 0.003 and 300 mol%, respectively. 相似文献
19.
Solid–solution NaBixTa1−xO3 photocatalyst powders were prepared by spray pyrolysis from aqueous and polymeric precursor solutions. The effects of Bi ions and additives in the precursors on the photocatalytic activities of the resulting catalysts were investigated by measuring hydrogen evolution rate from aqueous methanol solution under visible light irradiation (λ > 415 nm). The effects of NiO co-catalyst on hydrogen evolution rate are also tested. Hydrogen evolution rate was enhanced almost 20 times (to 1355 μmol g−1 h−1), with an induction period of 1 h, compared with a photocatalyst prepared by hydrothermal method because of the compositional uniformity and unique surface morphology with large BET surface area of the photocatalyst. Bi ions in the photocatalyst were confirmed by XPS to be mainly present as Bi5+. Polymeric additives to the precursors and NiO co-catalyst resulted in maximized hydrogen evolution rate when used at 300 mol% and 0.2 wt.%, respectively. The composition of the photocatalyst was optimized at NaBi0.07Ta0.93O3. 相似文献
20.
Self-doped TiO2 shows visible light photocatalytic activity, while pristine TiO2 is only UV responsive. Ti3+ has been demonstrated to be responsible for this improvement. We systematically studied various experimental parameters, such as the amount of reducing agent imidazole, types of imidazoles and Ti sources, and determined effects of these parameters on the combustion process and final materials. The phase composition, Ti3+ concentration, light absorption, surface area, and crystallinity of the product are significantly affected by the amount of imidazoles. Through comparing different imidazoles, we found that only flammable/combustible imidazoles are able to convert Ti4+ into Ti3+. This result is very helpful in understanding the mechanism and reactions in combustion process. Titanium precursors also have a great influence in production of Ti3+ doped TiO2 materials. Titanium alkoxides allow the successful synthesis of blue partially reduced TiO2, while TiCl4 only lead to white pristine TiO2. 相似文献