首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, heat transfer and water flow characteristics in wavy microchannel heat sink (WMCHS) with rectangular cross-section with various wavy amplitudes ranged from 125 to 500 μm is numerically investigated. This investigation covers Reynolds number in the range of 100 to 1000. The three-dimensional steady, laminar flow and heat transfer governing equations are solved using the finite-volume method (FVM). The water flow field and heat transfer phenomena inside the heated wavy microchannels is simulated and the results are compared with the straight microchannels. The effect of using a wavy flow channel on the MCHS thermal performance, the pressure drop, the friction factor, and wall shear stress is reported in this article. It is found that the heat transfer performance of the wavy microchannels is much better than the straight microchannels with the same cross-section. The pressure drop penalty of the wavy microchannels is much smaller than the heat transfer enhancement achievement. Both friction factor and wall shear stress are increased proportionally as the amplitude of wavy microchannels increased.  相似文献   

2.
Flow boiling experiments were conducted in straight and expanding microchannels with similar dimensions and operating conditions. Deionized water was used as the coolant. The test vehicles were made from copper with a footprint area of 25 mm × 25 mm. Microchannels having nominal width of 300 μm and a nominal aspect ratio of 4 were formed by wire cut Electro Discharge Machining process. The measured surface roughness (Ra) was about 2.0 μm. To facilitate easier comparison with the straight microchannels and also to simplify the method of fabrication, the expanding channels were formed with the removal of fins at selected location from the straight microchannel design, instead of using a diverging channel. Tests were performed on both the microchannels over a range of mass fluxes, heat fluxes and an inlet temperature of 90 °C. It was observed that the two-phase pressure drop across the expanding microchannel heat sink was significantly lower as compared to its straight counterpart. The pressure drop and wall temperature fluctuations were seen reduced in the expanding microchannel heat sink. It was also noted that the expanding microchannel heat sink had a better heat transfer performance than the straight microchannel heat sink, under similar operating conditions. This phenomenon in expanding microchannel heat sink, which was observed in spite of it having a lower convective heat transfer area, is explained based on its improved flow boiling stability that reduces the pressure drop oscillations, temperature oscillations and hence partial dry out.  相似文献   

3.
Predictions of flow and heat transfer in microchannels are ongoing issues in microfludics. This work focused on laminar flow (69 < Re < 800) within rectangular microchannel with hydraulic diameter from 106 μm to 307 μm for single-phase liquid flow. The friction factors obtained by experiments on the microchannels showed that conventional theory for fully-developed flow is applicable within the range of our experiments. A manifold configuration which ensured uniform flow through the microchannel array is thought to contribute to the improvement of accuracy. The average Nusselt number for the microchannel array was also evaluated experimentally in the condition of constant heat transfer rate. We found that there were deviations between the experimental and theoretical values of heat transfer rate in the microchannels. In order to predict heat transfer rate accurately, we proposed an empirical correlation in terms of Nu/(Re0.62 Pr0.33) and Brinkman number confined to the experimental range. The correlation is expected to be useful to design the microchannel devices related to heat transfer.  相似文献   

4.
Flow boiling in arrays of parallel microchannels is investigated using a silicon test piece with imbedded discrete heat sources and integrated local temperature sensors. The microchannels considered range in width from 102 μm to 997 μm, with the channel depth being nominally 400 μm in each case. Each test piece has a footprint of 1.27 cm by 1.27 cm with parallel microchannels diced into one surface. Twenty five microsensors integrated into the microchannel heat sinks allow for accurate local temperature measurements over the entire test piece. The experiments are conducted with deionized water which enters the channels in a purely liquid state. Results are presented in terms of temperatures and pressure drop as a function of imposed heat flux. The experimental results allow a critical assessment of the applicability of existing models and correlations in predicting the heat transfer rates and pressure drops in microchannel arrays, and lead to the development of models for predicting the two-phase pressure drop and saturated boiling heat transfer coefficient.  相似文献   

5.
Heat transfer with liquid–vapor phase change in microchannels can support very high heat fluxes for use in applications such as the thermal management of high-performance electronics. However, the effects of channel cross-sectional dimensions on the two-phase heat transfer coefficient and pressure drop have not been investigated extensively. In the present work, experiments are conducted to investigate the local flow boiling heat transfer of a dielectric fluid, Fluorinert FC-77, in microchannel heat sinks. Experiments are performed for mass fluxes ranging from 250 to 1600 kg/m2 s. Seven different test pieces made from silicon and consisting of parallel microchannels with nominal widths ranging from 100 to 5850 μm, all with a nominal depth of 400 μm, are considered. An array of temperature sensors on the substrate allows for resolution of local temperatures and heat transfer coefficients. The results of this study show that for microchannels of width 400 μm and greater, the heat transfer coefficients corresponding to a fixed wall heat flux as well as the boiling curves are independent of channel size. Also, heat transfer coefficients and boiling curves are independent of mass flux in the nucleate boiling region for a fixed channel size, but are affected by mass flux as convective boiling dominates. A strong dependence of pressure drop on both channel size and mass flux is observed. The experimental results are compared to predictions from a number of existing correlations for both pool boiling and flow boiling heat transfer.  相似文献   

6.
The existing experimental data in the literature on friction factor in microchannels are analyzed. Flow characteristics for nitrogen and helium in stainless steel microtubes, fused silica microtubes and fused silica square microchannels are studied experimentally. The data in fused silica microtubes with diameters ranging from 50 to 201 μm and the data in fused silica square channels with hydraulic diameter ranging from 52 to 100 μm show that the friction factors are in good agreement with the theoretical predictions for conventional-size channels. The friction factors in stainless steel tubes (D = 119–300 μm) are much higher than the theoretical predictions for tubes of conventional size. This discrepancy is resulted from the large relative surface roughness in the stainless steel tubes. From the literature review and the present test data it is suggested that for gaseous flow in microchannels with a relative surface roughness less than 1% the conventional laminar prediction should still be applied. A positive deviation of the friction factor from the conventional theory is observed due to the compressibility effect. In addition, smaller friction factors in fused silica microtubes with inner diameters ranging from 10 to 20 μm are obtained and the decrease in friction factor from the rarefaction effect is observed.  相似文献   

7.
This paper focused on the hydraulic and thermal characteristics of fractal tree-like microchannels with different ARs (aspect ratios) for the Reynolds numbers ranging from 150 to 1200. And the fractal microchannels with two branches and straight microchannels with the same heat transfer area were also compared in terms of the pressure loss, mean heat transfer coefficient, and COP (coefficient of performance). The experimental results showed that the fractal tree-like microchannels had a much higher heat transfer coefficient than that of straight microchannels at the cost of a much higher pump power. And for fractal and straight microchannels, the AR of microchannels was also found to have a relatively large impact on both the pressure loss and heat transfer.  相似文献   

8.
A simultaneous visualization and measurement study has been carried out to investigate effects of inlet/outlet configurations on flow boiling instabilities in parallel microchannels, having a length of 30 mm and a hydraulic diameter of 186 μm. Three types of inlet/outlet configurations were investigated. Fluid flow entering to and exiting from the microchannels with the Type-A connection was restricted because the inlet and outlet conduits were perpendicular to the microchannels. The fluid flow had no restriction in entering to and existing from the microchannels with the Type-B connection. In the Type-C connection, fluid flow was restricted in entering each microchannel but was not restricted in exiting from the microchannels. It is found that amplitudes of temperature and pressure oscillations in the Type-B connection are much smaller than those in the Type-A connection under the same heat flux and mass flux conditions. On the other hand, nearly steady flow boiling exists in the parallel microchannels with the Type-C connection under the experimental conditions. Therefore, this configuration is recommended for high-heat-flux microchannel applications. As predicted, the stability threshold is determined by the minimum in the pressure-drop-versus-flow-rate curve. The pressure drop and heat transfer coefficient versus vapor quality for flow boiling in microchannels with the Type-C connection are presented. It is found that experimental data of pressure drop are higher and heat transfer coefficients are lower for boiling flow at high vapor quality in microchannels than those predicted from correlation equations for boiling flow in macrochannels, due to local dryout.  相似文献   

9.
This work presents an experimental analysis of the hydrodynamic and thermal performance of micro-heat exchangers. Two micro-heat exchangers, characterized by microchannels of 100 × 100 and 200 × 200 μm square cross-sections, were designed for that purpose. The fluid used was deionized water and there was no phase change along the fluid circuit. The fluid pressure drop along the heat exchanger and the heat transfer were measured and corrections were made to isolate the contribution of the microchannels. The results were compared with the predictions of the classical viscous flow and heat transfer theory. The main conclusions show that the experimental results fit well with these theories. No effects of heat transfer enhancement or pressure drop increase were observed as a consequence of the small scale of the microchannels.  相似文献   

10.
This study investigates the design, construction and instrumentation of an experimental microchannel, with a rectangular cross-section and large aspect ratio, that allows characterization of the flow and convective heat transfer under well defined and precise conditions and makes it possible to vary the hydraulic diameter of the microchannel. The flow friction coefficient is estimated by direct pressure drop measurements inside the microchannel in a zone where the flow is fully developed. Since the wall thermal conditions inside the microchannel can not be measured directly, their estimation requires temperature measurements in the wall thickness and an inverse heat conduction method. The thermal and hydrodynamic results obtained by varying the hydraulic diameter between 1 mm and 100 μm do not deviate from the theory or empirical correlations for large-scale channels. These results let us confirm that for smooth walls the continuum mechanics laws for convection and fluid mechanics remain valid in microchannels of hydraulic diameter greater than or equal to 100 μm.  相似文献   

11.
Experiments were conducted to investigate forced convective cooling performance of a copper microchannel heat sink with Al2O3/water nanofluid as the coolant. The microchannel heat sink fabricated consists of 25 parallel rectangular microchannels of length 50 mm with a cross-sectional area of 283 μm in width by 800 μm in height for each microchannel. Hydraulic and thermal performances of the nanofluid-cooled microchannel heat sink have been assessed from the results obtained for the friction factor, the pumping power, the averaged heat transfer coefficient, the thermal resistance, and the maximum wall temperature, with the Reynolds number ranging from 226 to 1676. Results show that the nanofluid-cooled heat sink outperforms the water-cooled one, having significantly higher average heat transfer coefficient and thereby markedly lower thermal resistance and wall temperature at high pumping power, in particular. Despite the marked increase in dynamic viscosity due to dispersing the alumina nanoparticles in water, the friction factor for the nanofluid-cooled heat sink was found slightly increased only.  相似文献   

12.
Microchannel heat sinks (MCHS) can be made with channels of various shapes. Their size and shape may have remarkable influence on the thermal and hydrodynamic performance of MCHS. In this paper, numerical simulations are carried out to solve the three-dimensional steady and conjugate heat transfer governing equations using the Finite-Volume Method (FVM) of a water flow MCHS to evaluate the effect of shape of channels on the performance of MCHS with the same cross-section. The effect of shape of the channels on MCHS performance is studied for different channel shapes such as zigzag, curvy, and step microchannels, and it is compared with straight and wavy channels. The MCHS performance is evaluated in terms of temperature profile, heat transfer coefficient, pressure drop, friction factor, and wall shear stress. Results show that for the same cross-section of a MCHS, the temperature and the heat transfer coefficient of the zigzag MCHS is the least and greatest, respectively, among various channel shapes. The pressure drop penalty for all channel shapes is higher than the conventional straight MCHS. The zigzag MCHS has the highest value of pressure drop, friction factor, and wall shear stress followed by the curvy and step MCHS, respectively.  相似文献   

13.
Investigation of heat transfer in rectangular microchannels   总被引:4,自引:0,他引:4  
An experimental investigation was conducted to explore the validity of classical correlations based on conventional-sized channels for predicting the thermal behavior in single-phase flow through rectangular microchannels. The microchannels considered ranged in width from 194 μm to 534 μm, with the channel depth being nominally five times the width in each case. Each test piece was made of copper and contained ten microchannels in parallel. The experiments were conducted with deionized water, with the Reynolds number ranging from approximately 300 to 3500. Numerical predictions obtained based on a classical, continuum approach were found to be in good agreement with the experimental data (showing an average deviation of 5%), suggesting that a conventional analysis approach can be employed in predicting heat transfer behavior in microchannels of the dimensions considered in this study. However, the entrance and boundary conditions imposed in the experiment need to be carefully matched in the predictive approaches.  相似文献   

14.
This research article investigates the effect that hydrodynamic cavitation has on heat transfer. The fluid medium is refrigerant R-123 flowing through 227 μm hydraulic diameter microchannels. The cavitation is instigated by the inlet orifice. Adiabatic tests were conducted to study the two-phase cavitating flow morphologies and hydrodynamic characteristics of the flow. Diabatic experiments were performed resulting in surface temperatures under heat fluxes up to 213 W/cm2 and mass velocities from 622 kg/m2 s to 1368 kg/m2 s. Results were compared to non-cavitating flows at the same mass velocities. It was found that the cavitating flows can significantly enhance the heat transfer. The heat transfer coefficient of the cavitating flows was larger than the non-cavitating flows by as much as 84%. Single-phase and two-phase heat transfer coefficients have been elucidated and employed to deduce the heat transfer mechanism prevailing under boiling conditions with and without the presence of cavitation.  相似文献   

15.
This communication documents the experimental investigation of the theoretical model for predicting the thermal performance of parallel flow microchannel heat exchangers subjected to external heat flux. The thermal model investigated in this communication is that previously developed by the authors of this communication; Mathew and Hegab [B. Mathew, H. Hegab, Application of effectiveness-NTU relationship to parallel flowmicrochannel heat exchangers subjected to external heat transfer, International Journal of Thermal Sciences 31 (2010) 76–85]. The validity of the theoretical model with respect to microchannel profile, hydraulic diameter, heat capacity ratio and degree of external heat transfer is checked. The microchannel profiles investigated are trapezoidal and triangular with hydraulic diameter of 278.5 and 279.5 μm, respectively. The influence of hydraulic diameter is analyzed using trapezoidal microchannels with hydraulic diameters of 231 and 278.5 μm. Experiments are conducted for heat capacity ratios of unity and 0.5 using the heat exchanger employing the trapezoidal microchannel with hydraulic diameter of 278.5 μm for purposes of validating the model. Experiments are done for all heat exchangers for two different levels of external heat transfer; 15% and 30% of the maximum possible heat transfer. Irrespective of the parameter that is investigated the experimental data are found to perfectly match with the theoretical predictions thereby validating the thermal model investigated in this communication.  相似文献   

16.
Convective boiling in transparent single microchannels with similar hydraulic diameters but different shaped cross-sections was visualized, along with simultaneous measurement of the local heat transfer coefficient. Two types of microchannels were tested: a circular Pyrex glass microtube (210 μm inner diameter) and a square Pyrex glass microchannel (214 μm hydraulic diameter). A 100-nm-thick semi-transparent ITO/Ag thin film sputtered on the outer wall of the microchannel was used for direct joule heating of the microchannel.The flow field visualization showed semi-periodic variation in the flow patterns in both the square and circular microchannels. Such variation was because the confined space limited the bubble growth in the radial direction.In the square microchannel, both the number of nucleation bubbles and the local heat transfer coefficient increased with decreasing vapor quality. The corners acted as active nucleation cavities, leading to the higher local heat transfer coefficient. In contrast, lack of cavities in the smooth glass circular microchannel yielded a relatively smaller heat transfer coefficient at lower vapor quality. Finally, the heat transfer coefficient was higher for the square microchannel because corners in the square microchannel acted as effective active nucleation sites.  相似文献   

17.
Fully-developed flow and heat transfer in periodic wavy channels with rectangular cross sections are studied using direct numerical simulation, for increasing Reynolds numbers spanning from the steady laminar to transitional flow regimes. The results show that steady flow is characterized by the formation of symmetric secondary flow or Dean vortices when liquid flows past the bends. It is found that the patterns of Dean vortices may evolve along the flow direction, thus leading to chaotic advection, which can greatly enhance the convective fluid mixing and heat transfer. With increasing Reynolds numbers, the flow undergoes transition from a steady state to a periodic one with a single frequency, and subsequently to a quasiperiodic flow with two incommensurate fundamental frequencies. Within these unsteady regimes, the flow is characterized by very complex Dean vortices patterns which evolve temporally and spatially along the flow direction, and the flow symmetry may even be lost. Further increase in Reynolds number leads to chaotic flow, where the Fourier spectrum of the velocity evolution becomes broadband. The bifurcation scenario in wavy channels may thus share some common features with the well-known Ruelle–Takens–Newhouse scenario. Heat transfer simulation in all flow regimes is carried out with constant wall temperature condition and liquid water as the coolant. It is found that due to the efficient mixing in wavy channels, the heat transfer performance is always significantly more superior to that of straight channels with the same cross sections; at the same time the pressure drop penalty of wavy channels can be much smaller than the heat transfer enhancement. The present study shows that these wavy channels may have advantages over straight channels and thus serve as promising candidates for incorporation into efficient heat transfer devices.  相似文献   

18.
Theoretical and experimental works on microscale transport phenomena have been carried out in the past decade in the attempt to analyze possible new effects and to assess the influence of downscaling on the classical correlations which are used in macro-scale heat and fluid flow, following the need to supply engineers with reliable tools to be used in the design of micro-scale devices. These results were sometimes in mutual contrast, as is the case for the determination of the friction factor, which has been found to be lower, higher or comparable to that for macroscopic channels, depending on the researchers. In this work the compressible flow of nitrogen inside circular microchannels from 26 μm to 508 μm in diameter and with different surface roughness is investigated for the whole range of flow conditions: laminar, transitional and turbulent. Over 5000 experimental data have been collected and analysed. The data confirmed that in the laminar regime the agreement with the conventional theory is very good in terms of friction factors both for rough and smooth microtubes. For the smaller microchannels (<100 μm) when Re is greater than 1300 the friction factor tends to deviate from the Poiseuille law because the flow acceleration due to compressibility effects gains in importance. The transitional regime was found to start no earlier than at values of the Reynolds number around 1800. Both smooth and sudden changes in the flow regime have been found, as reported for conventional tubes. Fully developed turbulent flow was attained with both smooth and rough tubes, and the results for smooth tubes seem to confirm Blasius' relation, while for rough tubes the Colebrook–White correlation is found to be only partially in agreement with the experimental friction factors. In the turbulent regime the dependence of the friction factor on the Reynolds number is less pronounced for microtubes than the prediction of the Colebrook–White correlation and the friction factor depends only on the microtube “relative roughness”.  相似文献   

19.
The present study investigates three-dimensional characteristics of fluid flow and heat transfer around a wavy cylinder which has the sinusoidal variation in the cross sectional area along the spanwise direction. The three different wavelengths of π/4, π/3 and π/2 at the fixed wavy amplitude of 0.1 have been considered to investigate the effect of waviness on especially the forced convection heat transfer around a wavy cylinder when the Reynolds and Prandtl numbers are 300 and 0.71, respectively. The numerical solution for unsteady forced convective heat transfer is obtained using the finite volume method. The immersed boundary method is used to handle the wavy cylinder in a rectangular grid system. The present computational results for a wavy cylinder are compared with those for a smooth cylinder. The fluid flow and heat transfer around the wavy cylinder depends on both the location along the spanwise direction and the wavelength. The time- and total surface-averaged Nusselt number for a wavy cylinder with λ = π/2 is larger than that for a smooth cylinder, whereas that with λ = π/4 and π/3 is smaller than that for a smooth cylinder. However, because the surface area exposed to heat transfer for a wavy cylinder is larger than that for a smooth cylinder, the total heat transfer rate for a wavy cylinder with different wavelengths of λ = π/4,π/3 and π/2 is larger than that for a smooth cylinder.  相似文献   

20.
Flow boiling of the perfluorinated dielectric fluid FC-77 in a silicon microchannel heat sink is investigated. The heat sink contains 60 parallel microchannels each of 100 μm width and 389 μm depth. Twenty-five evenly distributed temperature sensors in the substrate yield local heat transfer coefficients. The pressure drop across the channels is also measured. Experiments are conducted at five flow rates through the heat sink in the range of 20–80 ml/min with the inlet subcooling held at 26 K in all the tests. At each flow rate, the uniform heat input to the substrate is increased in steps so that the fluid experiences flow regimes from single-phase liquid flow to the occurrence of critical heat flux (CHF). In the upstream region of the channels, the flow develops from single-phase liquid flow at low heat fluxes to pulsating two-phase flow at high heat fluxes during flow instability that commences at a threshold heat flux in the range of 30.5–62.3 W/cm2 depending on the flow rate. In the downstream region, progressive flow patterns from bubbly flow, slug flow, elongated bubbles or annular flow, alternating wispy-annular and churn flow, and wall dryout at highest heat fluxes are observed. As a result, the heat transfer coefficients in the downstream region experience substantial variations over the entire heat flux range, based on which five distinct boiling regimes are identified. In contrast, the heat transfer coefficient midway along the channels remains relatively constant over the heat flux range tested. Due to changes in flow patterns during flow instability, the heat transfer is enhanced both in the downstream region (prior to extended wall dryout) and in the upstream region. A previous study by the authors found no effect of instabilities during flow boiling in a heat sink with larger microchannels (each 300 μm wide and 389 μm deep); it appears therefore that the effect of instabilities on heat transfer is amplified in smaller-sized channels. While CHF increases with increasing flow rate, the pressure drop across the channels has only a minimal dependence on flow rate once boiling is initiated in the microchannels, and varies almost linearly with increasing heat flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号