首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C/C–ZrC–SiC composites with continuous ZrC–SiC ceramic matrix were prepared by a multistep technique of precursor infiltration and pyrolysis process. Ablation properties of the composites were tested under an oxyacetylene flame at 3000 °C for 120 s. The results show that the linear ablation rate of the composites was about an order lower than that of pure C/C and C/C–SiC composites as comparisons, and the mass of the C/C–ZrC–SiC composites increased after ablation. Three concentric ring regions with different coatings appeared on the surface of the ablated C/C–ZrC–SiC composites: (i) brim ablation region covered by a coating with layered structure including SiO2 outer layer and ZrO2–SiO2 inner layer; (ii) transition ablation region, and (iii) center ablation region with molten ZrO2 coating. Presence of these coatings which acted as an effective oxygen and heat barrier is the reason for the great ablation resistance of the composites.  相似文献   

2.
《Ceramics International》2017,43(14):10661-10667
Ablation behavior of C/C-ZrC-SiC composites was investigated using a plasma flame. The composites exhibited excellent ablation performance. After ablation for 180 s, three kinds of ablation behavior appeared from the border to the center on the surface, which were closely related to the temperature and denudation force. Additionally, the ablation behavior in the cross-sectional direction of the composites was mainly controlled by the temperature. During the ablation, ZrC and SiC were oxidized into ZrO2 and SiO2, respectively, resulting in the formation of a ZrO2-SiO2 binary eutectic system. The ablation mechanism was also discussed, which could provide strong illustration of the evolution processes of the eutectic system at different temperatures.  相似文献   

3.
Considering practical environment, the bending property of C/C-ZrC-SiC, C/C-SiC and C/C composites after ablation was worthily studied. Results revealed that C/C-ZrC-SiC composites had a better laser ablation resistance and higher bending strength retention compared with C/C-SiC and C/C composites. The mass loss rate and ablated depth of C/C-ZrC-SiC composites was − 0.09% and 190.377 μm, respectively. The retention of bending strength of C/C-ZrC-SiC composites was 217.67 ± 44.12 MPa, whose strength decreased by 3.57% compared with that of as-prepared C/C-ZrC-SiC composites. The excellent anti-ablation property and residual bending strength of C/C-ZrC-SiC composites were attributed to the lowest ablative temperature and the effective protection of the ZrO2 grain and ZrO2-SiO2 layer, which were formed by oxidation of ZrC-SiC, evaporation of SiO2, migration of liquid ZrO2-SiO2 and the infiltrated as well as grown ZrO2. However, the fracture behavior transformation of composites from pseudo-plastic rupture to brittle rupture was induced by the ablation damage.  相似文献   

4.
In this study, C/C–SiC–ZrC composites coated with SiC were prepared by precursor infiltration pyrolysis combined with reactive melt infiltration. The pyrolysis behavior of the hybrid precursor was investigated using thermal gravimetric analysis-differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy techniques. The microstructure and ablation behavior of the composites were also investigated. The results indicate that the composites exhibit an interesting structure, wherein a ceramic coating composed of SiC and a small quantity of ZrC covers the exterior of the composites, and the SiC–ZrC hybrid ceramics are partially embedded in the matrix pores and distributed around the carbon fibers as well. The composites exhibit good ablation resistance with a surface temperature of over 2300 °C during ablation. After ablation for 120 s, the mass and linear ablation rates of the composites are 0.0026 g/s and 0.0037 mm/s, respectively. The great ablation resistance of the composites is attributed to the formation of a continuous phase of molten SiO2 containing SiC and ZrO2, which seals the pores of the composites during ablation.  相似文献   

5.
C/C–ZrC–SiC composites were prepared by precursor infiltration and pyrolysis process using a mixture solution of organic zirconium-containing polymer and polycarbosilane as precursors. Porous carbon/carbon (C/C) composites with density of 0.92, 1.21 and 1.40 g/cm3 were used as preforms, and the effects of porous C/C density on the densification behavior and ablation resistance of C/C–ZrC–SiC composites were investigated. The results show that the C/C preforms with a lower density have a faster weight gain, and the obtained C/C–ZrC–SiC composites own higher bulk density and open porosity. The composites fabricated from the C/C preforms with a density of 1.21 g/cm3 exhibit better ablation resistance with a surface temperature of over 2400 °C during ablation. After ablation for 120 s, the linear and mass ablation rates of the composites are as low as 1.02 × 10−3 mm/s and −4.01 × 10−4 g/s, respectively, and the formation of a dense and continuous coating of molten ZrO2 solid solution is the reason for their great ablation resistance.  相似文献   

6.
《Ceramics International》2017,43(17):14642-14651
To improve the ablation resistance of C/C composites, ZrC modified composites were fabricated by precursor infiltration and pyrolysis combined with gradient chemical vapor infiltration process. The effects of ZrC precursor concentration on the microstructure, mechanical and ablation properties of the composites were studied. Results showed that with the increase of ZrC precursor concentration, the ZrC content and macroscopic uniformity of the composites increased but with obvious ZrC particle aggregation and the flexural strength decreased gradually. As the concentration of ZrC precursor improved to 60%, the fracture mode of the composites transformed from toughness to brittleness which was mainly attributed to the improved graphitization degree and reaction damage of carbon fiber in the precursor pyrolysis process. However, the ablation resistance was enhanced with the increasing precursor concentration which was resulted from the formation of ZrO2 in center ablation region and continuous ZrO2 coating in brim region serving as a barrier to heat and oxygen transfer.  相似文献   

7.
《Ceramics International》2015,41(4):5976-5983
Cf/ZrC composites were fabricated by reactive melt infiltration at 1200 °C, Low melting Zr7Cu10, ZrCu and Zr2Cu alloys were used as infiltrators and the effect of Cu on ablation properties of the composites was investigated. The results show that the Cf/ZrC composites exhibit excellent anti-ablative properties affected apparently by the Cu contents. With the increase of Cu in infiltrators, the linear recession rates decrease from 0.0019±0.0006 to −0.0006±0.0002 mm s−1, whereas the mass loss rates increase from 0.0006±0.0003 to 0.0047±0.0009 g s−1. The formation of a dense ZrO2 protective layer and the evaporation of residual Cu are in favor of their ablation resistance.  相似文献   

8.
Long time oxidation protection at ultra-high temperatures or ablation protection has been a choke point for C/C composites. In this study, long time ablation protection of different-La2O3-content (5–30 vol.%) modified ZrC coating for SiC-coated carbon/carbon (C/C) composites was investigated. Results showed that ZrC coating with 15 vol.% La2O3 had good ablation resistance and could protect C/C composites for at least 700?s at 2160 °C. A high-thermal-stability and low-oxygen-diffusivity oxide scale containing m-ZrO2 particles and molten phases with La0.1Zr0.9O1.95 and La2Zr2O7 was formed during ablation, offering the ablation protection. La could erode grain boundaries of ZrO2 to refine ZrO2 by short-circuit diffusion and m-ZrO2 particles were retained due to less bulk diffusion than grain-boundary diffusion of La into ZrO2. The erosion resulted in the formation of molten phases containing fine nano-ZrO2, which served as viscous binder among m-ZrO2 particles and crack sealer for the oxide scale.  相似文献   

9.
Precursors for Zr/Si/C multiphase ceramics were synthesized by the reactions of dilithiozirconocene complex with dichlorodimethylsilane, methyltrichlorosilane and dichloromethylvinylsilane, respectively. The precursor-to-ceramic process of the precursor was investigated by TG-GC–MS and TG-FTIR analyses, confirming a complete transformation from organometallic polymers into ceramics below 800 °C. Annealing experiments of the derived ceramics at temperatures from 1000 °C to 2000 °C indicated the crystallization from ZrSiO4, ZrO2 to ZrC. Furthermore, micrometer-sized Zr/Si/C ceramic microspheres were successfully fabricated from the precursor at 1000 °C, showing surface morphology like wrinkled pea. According to the XRD, HRTEM and XPS analyses, such multiphase ceramic microspheres consist of ZrSiO4, ZrO2, and amorphous SiOxCy. Interestingly, the ceramic microspheres performed satisfactory electromagnetic wave absorbing capacity with the RLmax reaching −34 dB, which could be potential candidates for electromagnetic micro-devices.  相似文献   

10.
《Ceramics International》2016,42(11):13041-13046
To protect carbon/carbon (C/C) composites against oxidation, a SiC-ZrB2-ZrC coating was prepared by the in-situ reaction between ZrC, B4C and Si. The thermogravimetric and isothermal oxidation results indicated the as-synthesized coating to show superior oxidation resistance at elevated temperatures, so it could effectively protect C/C composites for more than 221 h at 1673 K in air. The crystalline structure and morphology evolution of the multiphase SiC-ZrB2-ZrC coating were investigated. With the increase of oxidation time, the SiO2 oxide layer transformed from amorphous to crystalline. Flower-like and flake-like SiO2 structures were generated on the glass film during the oxidation process of SiC-ZrB2-ZrC coating, which might be ascribed to the varying concentration of SiO. The oxide scale presented a two-layered structure ~130 µm thick after oxidation, consisting of a SiO2-rich glass layer containing ZrO2/ZrSiO4 particles and a Si-O-Zr layer. The multiphase SiC-ZrB2-ZrC ceramic coating exhibited much better oxidation resistance than monophase SiC, ZrB2 or ZrC ceramic due to the synergistic effect among the different components.  相似文献   

11.
《Ceramics International》2016,42(11):12756-12762
Three-dimensional (3D) Cf/ZrC–SiC composites were successfully prepared by the polymer infiltration and pyrolysis (PIP) process using polycarbosilane (PCS) and a novel ZrC precursor. The effects of PyC interphase of different thicknesses on the mechanical and ablation properties were evaluated. The results indicate that the Cf/ZrC–SiC composites without and with a thin PyC interlayer of 0.15 µm possess much poor flexural strength and fracture toughness. The flexural strength grows with the increase of PyC layer thickness from 0.3 to 1.2 µm. However, the strength starts to decrease with the further increase of the PyC coating thickness to 2.2 µm. The highest flexural strength of 272.3±29.0 MPa and fracture toughness of 10.4±0.7 MPa m1/2 were achieved for the composites with a 1.2 µm thick PyC coating. Moreover, the use of thicker PyC layer deteriorates the ablation properties of the Cf/ZrC–SiC composites slightly and the ZrO2 scale acts as an anti-ablation component during the testing.  相似文献   

12.
A C/C-ZrC-SiC composite was successfully prepared by high-solid-loading slurry impregnation combined with polymer infiltration and pyrolysis. The microstructure and ablation behavior of the C/C–ZrC–SiC composite were investigated. ZrC particles were uniformly distributed in the matrix, and the obtained C/C–ZrC–SiC composite had a high density of 2.74 g/cm3. After exposure to oxyacetylene flame with a heat flux of 3.86 MW/m2 for 120 s, the mass and linear ablation rates of the composite were 0.72 ± 0.11 mg/s and 0.52 ± 0.09 µm/s, respectively. The excellent ablation properties of the composite were attributed to the protection of the matrix by a three-layered oxide scale consisting of ZrO2/SiO2-rich/ZrO2-SiO2.  相似文献   

13.
《Ceramics International》2016,42(6):6720-6727
3D Cf/ZrC–SiC composites were prepared by a combination process of slurry infiltration and reactive melt infiltration. ZrO2 powders and ZrSi2 alloy, both of which reacted with amorphous carbon, were used as pore-making agent and infiltrator, respectively. After carbothermal reduction at 1650 °C, X-ray diffraction analysis revealed that ZrO2 powders were completely converted into ZrC by reacting with amorphous carbon, and an in-situ formed submicron porous configuration was observed at the areas containing ZrO2. Results showed that the matrix in composites mainly consisted of SiC, ZrC and a small quantity of residual metal. SEM and TEM images revealed the formation of ZrC or SiC intergranular particles in the matrix and the characteristic around the residual resin carbon. The composites had a bending strength of 94.89±16.7 MPa, fracture toughness of 11.0±0.98 MPa m1/2, bulk density of 3.36±0.01 g/cm3, and open porosity of 4.64±0.40%. The formation mechanisms of ZrC–SiC dual matrix and intrabundles׳ structure were discussed in the article.  相似文献   

14.
《Ceramics International》2015,41(6):7359-7365
A soluble polymer precursor for ultra-fine zirconium carbide (ZrC) was successfully synthesized using phenol and zirconium tetrachloride as carbon and zirconium sources, respectively. The pyrolysis behavior and structural evolution of the precursor were studied by Fourier transform infrared spectra (FTIR), differential scanning calorimetry, and thermal gravimetric analysis (DSC–TG). The microstructure and composition of the pyrolysis products were characterized by X-ray diffraction (XRD), laser Raman spectroscopy, scanning electron microscope (SEM) and element analysis. The results indicate that the obtained precursor for the ultra-fine ZrC could be a Zr–O–C chain polymer with phenol and acetylacetone as ligands. The pyrolysis products of the precursor mainly consist of intimately mixed amorphous carbon and tetragonal ZrO2 (t-ZrO2) in the temperature range of 300–1200 °C. When the pyrolysis temperature rises up to 1300 °C, the precursor starts to transform gradually into ZrC, accompanied by the formation of monoclinic ZrO2 (m-ZrO2). The carbothermal reduction reaction between ZrO2 and carbon has been substantially completed at a relatively low temperature (1500 °C). The obtained ultra-fine ZrC powders exhibit as well-distributed near-spherical grains with sizes ranging from 50 to 100 nm. The amount of oxygen in the ZrC powders could be further reduced by increasing the pyrolysis temperature from 1500 to 1600 °C but unfortunately the obvious agglomeration of the ZrC grains will be induced.  相似文献   

15.
《Ceramics International》2017,43(15):12005-12012
To improve the ablation resistance of SiC coating, HfB2-SiC coating was prepared on SiC-coated carbon/carbon (C/C) composites by in-situ reaction method. Owing to the penetration of coating powders, there is no clear boundary between SiC coating and HfB2-SiC coating. After oxyacetylene ablation for 60 s at heat flux of 2400 kW/m2, the mass ablation rate and linear ablation rate of the coated C/C composites were only 0.147 mg/s and 0.267 µm/s, reduced by 21.8% and 60.0%, respectively, compared with SiC coated C/C composites. The good ablation resistance was attributed to the formation of multiple Hf-Si-O glassy layer including SiO2, HfO2 and HfSiO4.  相似文献   

16.
《Ceramics International》2016,42(15):16906-16915
An improved reactive melt infiltration (RMI) route using Zr, Si tablet as infiltrant was developed in order to obtain high-performance and low-cost C/C-ZrC-SiC composite with well defined structure. Two other RMI routes using Zr, Si mixed powders and alloy were also performed for comparison. Effects of different infiltration routes on the microstructure and ablation behavior were investigated. Results showed that C/C-ZrC-SiC composite prepared by Zr, Si tablets developed a dense gradient microstructure that content of ZrC ceramic increased gradually along the infiltration direction, while that of SiC ceramic decreased. Composites prepared by Zr, Si mixed powders and alloy showed a homogeneous microstructure containing more SiC ceramic. In addition, two interface patterns were observed at the carbon/ceramic interfaces: continuous SiC layer and ZrC, SiC mixed layers. It should be due to the arising of stable Si molten pool in the tablet. Among all as-prepared samples, after exposing to the oxyacetylene flame for 60 s at 2500 °C, C/C-ZrC-SiC composite infiltrated by Zr, Si tablet exhibited the best ablation property owing to its unique gradient structure.  相似文献   

17.
Carbon/carbon(C/C) composites infiltrated with Zr–Ti were prepared by chemical vapor infiltration and reactive melt infiltration. Their microstructure and ablation behavior at different temperatures and time were investigated. The results show that C/C composites infiltrated with Zr–Ti have good interface cohesion between carbon fibers, pyrocarbon and carbide. Compared with C/C composites and C/C–ZrC composites, the synthesized sample with Zr0.83Ti0.17C0.92 and Ti0.82Zr0.18C0.92 exhibits better ablation resistance at 2500 °C due to the newly formed protective layer composed of ZrTiO2 pinned by ZrO2 grains after ablation. The ablation resistance of the sample with Zr0.57Ti0.43C1.01 increased gradually with the decrease of temperature from 3000 °C to 2000 °C, whereas the ablation resistance of the sample with Zr0.83Ti0.17C0.92 and Ti0.82Zr0.18C0.92 first increased obviously and then decreased slightly. In addition, the work indicates that surplus particles or liquid phases of oxides cannot protect the matrix, and that the liquid oxides may even cause severe ablation. Furthermore, a protective layer of oxides tends to be formed with the increase of ablation time.  相似文献   

18.
C/C-ZrC and C/SiC-ZrC composites were fabricated by a joint process of slurry impregnation and chemical vapor infiltration, in which ZrC matrix was obtained by slurry impregnation process, while C or SiC matrix was introduced by chemical vapor infiltration process. The as fabricated C/C-ZrC and C/SiC-ZrC composites have densities of 1.67 g cm?3 and 1.91 g cm?3 respectively. Tensile strength is 89.4±8.4 MPa and 182.2±14.0 MPa respectively for the as prepared C/C-ZrC and C/SiC-ZrC. Ablation behavior of the C/C-ZrC and C/SiC-ZrC composites under air plasma was studied and compared in detail. Due to different oxidation resistance and heat transfer capacity of the matrix, these two ZrC based composites showed various ablation behavior. The linear erosion rate is 48 µm s?1 and 39 µm s?1 respectively for C/C-ZrC and C/SiC-ZrC composites.  相似文献   

19.
Micron-size zirconium oxide (ZrO2) was used to improve the thermal stability and ablation properties of asbestos fiber/phenolic composites and to reduce their final cost. ZrO2/asbestos/phenolic composites were prepared in an autoclave by the curing cycle process. The densities of the composites were in the range of 1.64–1.82 g/cm3. The ablation properties of composites were determined by oxyacetylene torch environment and burn-through time, erosion rates and back surface temperature in the first required 20 s. To understand the ablation mechanism, the morphology and phase composition of the composites were studied by scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. Thermal stability of the produced materials was estimated by means of thermal gravimetric analysis, in air which consisted of dynamic scans at a heating rate of 10 °C/min from 30 to 1000 °C with bulk samples of about 23±2 mg. The thermal stability of the composites was enhanced by adding ZrO2. The results showed that the linear and mass ablation rates of the composites after adding 14 wt% ZrO2 decreased by 58% and 92%, respectively. The back surface temperature of a sample with 14% zirconia was 49% lower than that of pure composite. The SEM studies showed that, modified composites displayed much lower porosity than that of non-modified composite and the destruction of asbestos fibers was very low. On the other hand, it appeared that a thin melted layer of ZrO2 covered the surfaces of zirconia-containing composites.  相似文献   

20.
《Ceramics International》2015,41(7):8388-8396
ZrB2–SiC–ZrO2 composites were hot pressed in order to investigate the effects of adding nano-sized ZrO2 particles as well as the hot pressing parameters on the densification behavior of ZrB2–SiC composites. An L9 orthogonal array of the Taguchi method was employed to study the significance of each parameter such as the sintering temperature, time, the applied external pressure, and ZrO2/SiC volume ratio on the densification process. The statistical analyses revealed that among the mentioned parameters, the hot pressing temperature had a great influence over the densification. By being hot pressed at 1850 °C for 90 min under 16 MPa, fully dense ZrB2-based composites were obtained. The relative density of the composites decreased at first and then enhanced as a function of ZrO2/SiC ratio. Microstructural investigation of the fracture surfaces of the composites, which was carried out using the SEM analysis, showed the formation of new phases on the surfaces of SiC grains. The EDS and XRD analyses identified the ZrC as the newly formed interfacial phase due to the reaction between nano-ZrO2 and SiC. The ZrC acted as an adhesive interphase between the ZrB2/SiC grains, which could assist the sintering process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号