首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to ascertain the structural relationship of zirconolite and pyrochlore for their potential application in HLW immobilization, the Gd-doped zirconolite-pyrochlore composite ceramics (Ca1-xZr1-xGd2xTi2O7) were systematically synthesized with x?=?0.0–1.0 by traditional solid-phase reaction method. The phase evolution and microstructure of the as-prepared samples have been elucidated by XRD and Rietveld refinement, Raman spectroscopy, BSE-EDS and HRTEM analysis. The results showed that zirconolite-2M, zirconolite-4M, perovskite and pyrochlore, four phases were identified in Ca1-xZr1-xGd2xTi2O7 system and could be coexisted at x?=?0.4 composition. With the increase of Gd3+ substitution, the phase evolution was followed by zirconolite-2M→zirconolite-4M→pyrochlore. It is illustrated that the phase transformation from zirconolite-2M to zirconolite-4M was promoted by the preferential substitution of Gd3+ for Ca2+. And the solubility of Gd3+ in zirconolite-2M, zirconolite-4M and pyrochlore increased in sequence. The chemical stability test was also measured by the PCT leaching method. The normalized elemental release rates of Ca, Zr, Ti and Gd in Ca1-xZr1-xGd2xTi2O7 system were fairly low and in the range of 10?6?10?8 g?m?2 d?1, which indicated a potential ceramics composite ensemble of CaZrTi2O7-Gd2Ti2O7 system for nuclear HLW immobilization.  相似文献   

2.
The structural and thermoelectric (TE) properties of polycrystalline CaMn1-xNbxO3-δ (0.025?≤?x?≤?0.25) were studied with X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and electrical transport measurements, with an emphasis placed on the Nb5+ content. The CaMn1-xNbxO3-δ crystallized in an orthorhombic perovskite structure of the Pnma space group. The density and grain size of the CaMn1-xNbxO3-δ samples gradually decreased when Nb5+ ions substituted Mn4+ ions. The CaMn0.95Nb0.05O3-δ sample contained charge-ordered domains, stacking faults, and micro-twins. The substitution of Nb5+ for Mn4+ up to x?=?0.15 led to an increase in electrical conductivity, mainly due to an increased electron concentration. The CaMn1-xNbxO3-δ samples with low Nb5+ contents (0.025?≤?x?≤?0.15) showed metallic behavior, whereas those with high Nb5+ contents (0.2?≤?x?≤?0.25) showed semiconducting behavior. The Nb5+ substitution lowered the absolute value of the Seebeck coefficient for the CaMn1-xNbxO3-δ samples due to an increased electron concentration. The largest power factor (1.19?×?10?4 W?m?1 K?2) was obtained for CaMn0.95Nb0.05O3-δ at 800?°C. The partial substitution of Nb5+ for Mn4+ in CaMnO3-δ proved to be highly effective for improving high-temperature TE properties.  相似文献   

3.
Magnetoelectrics are materials that join magnetic and electric orderings in the same phase. They exhibit magnetoelectric coupling which is important from the fundamental and practical point of view. The subject of the paper is a presentation of magnetic, electric and magnetoelectric properties of 0.5BiFeO3–0.5Pb(Fe0.5Nb0.5)O3 solid solution. The obtained material belongs to oxide perovskite magnetoelectrics of relatively high magnetic and electric ordering temperatures. Both temperatures are considerably above room what suggests potential application possibilities of the material. The magnetic properties were investigated using Mössbauer spectroscopy and magnetization measurements. The solid solution is an antiferromagnet with incomplete compensated magnetic moments. The electrical properties were determined using impedance spectroscopy analysis. There is an observed change of the electrical properties at the magnetic ordering temperature what indicates magnetoelectric coupling in the system. The electrical conductivity mechanism is also proposed. Magnetoelectric voltage coefficient was determined and possible explanation of its changes was proposed.  相似文献   

4.
0.975[(Na0.5K0.5)1−2xMgxNbO3]–0.025(Bi0.5Na0.5TiO3) (KNMN–BNT, x=0, 0.01, 0.02, 0.03, 0.04 and 0.05) lead-free piezoelectric ceramics were fabricated by the conventional solid-state sintering method. The dependence of Mg content on the microstructure and electrical properties of the ceramics is investigated. The X-ray diffraction (XRD) analysis revealed that an appropriate amount of Mg diffused into the KNN–BNT lattice to form a stable solid solution, the ceramics possessed a pure perovskite structure, and a morphotropic phase boundary (MPB) between the orthorhombic and tetragonal phases was observed with the composition of 0.02≤x≤0.05. The orthorhombic–tetragonal transition temperature (TO–T) is less than 95 °C and the Curie temperature (Tc) is almost unchanged (~360 °C) with the increase of MgO content. The ceramics with x=0.02 showed enhanced piezoelectric and ferroelectric properties because of close proximity to the MPB, i.e., d33~210 pC/N, kp~0.41, 2Ec~22.4 kV/cm and 2Pr~39.2 μC/cm2. Moreover, the dielectric properties exhibited optimal effects with x=0.02, that is εr~637 and tan δ~0.09. These results indicate that the introduction of MgO is an effective method to improve the density as well as the electrical properties and the temperature stability of the KNN–BNT ceramics. As a result, the KNMN–BNT ceramic is a promising candidate for lead-free piezoelectric materials.  相似文献   

5.
Nd2O3 doped 0.82Bi0.5Na0.5TiO3–0.18Bi0.5K0.5TiO3 (abbreviated to BNKT) binary lead-free piezoelectric ceramics were synthesized by the conventional mixed-oxide method. The results show that the BNKT ceramics with 0–0.15 wt.% Nd2O3 doping possesses a single perovskite phase with rhombohedral structure. The grain size of BNKT decreased with the addition of Nd2O3 dopant. The temperature dependence of the dielectric constant ?r revealed that there were two-phase transitions from ferroelectric to anti-ferroelectric and anti-ferroelectric to paraelectric. A diffuse character was proved by linear fitting of the modified Curie–Weiss law. At room temperature, the specimens containing 0.0125 wt.% Nd2O3 with homogeneous microstructure presented excellent electrical properties: the piezoelectric constant d33 = 134 pC/N, the electromechanical coupling factor Kp = 0.27, and the dielectric constant ?r = 925 (1 kHz).  相似文献   

6.
Bulk Cu0.5Tl0.5Ba2(Ca2−xYx)Cu3O10−δ superconductor ceramic samples were synthesized by the conventional solid-state method and characterized by X-ray diffraction, dc-resistivity, ac-susceptibility and Fourier Transform Infrared spectroscopy. The main purpose of this study was to investigate the role of charge carriers and the effect of Y substitution at Ca sites in between the CuO2 planes on superconductivity. The superconducting properties are suppressed by Y substitution at Ca sites in between the CuO2 planes of Cu0.5Tl0.5Ba2(Ca2−xYx)Cu3O10−δ samples. It is most likely that Y3+ may create correlated domains in between the CuO2 planes and localizes the carriers, which lowers the diamagnetic screening and suppresses the superconductivity. Therefore, cationic substitution reduces the three dimensional (3D) mobility of carriers, resulting in the reduction of the Fermi vector and velocity of the carriers, which in turn suppresses the superconducting properties of the material.  相似文献   

7.
Composite ceramics of CoFe2O4/Fe3O4 with different weight ratios were synthesized by Spark Plasma Sintering (SPS) at a sintering temperature of 500 °C. The X-ray diffraction patterns demonstrate that all samples are composed of CoFe2O4 and Fe3O4 phases. The magnetization curves for all the composite ceramic are single-step loops indicating the existence of exchange spring effect. Due to the competition between the exchange interaction and the dipolar interaction, magnetic properties like coercivity (Hc) and remanence (Mr) are sensitive to the weight ratio of the soft phase.  相似文献   

8.
Li2Mg3Ti1-X(Mg1/3Nb2/3)XO6 (0?≤x?≤?0.25) ceramics were prepared by a conventional solid-state reaction process. Their crystal structures, sintering characteristics, Raman spectra and microwave dielectric properties were then investigated. XRD patterns of the sintered samples indicated that all compositions showed a single phase and the rock-salt structure. As the (Mg1/3Nb2/3)4+ contents increase, the variations of εr values showed a downward trend, which could be explained by the changes of polarizabilities and the shift of Raman vibration modes. Q·f values initially increased to a maximum value and then decreased with increasing of x values. In addition, τf values decreased almost linearly with the x values, which significantly correlated with the thermal expansion coefficient. Excellent combined microwave dielectric properties with εr =?14.79, Q·f?=?204,900?GHz and τf =??18.43?ppm/°C were obtained for Li2Mg3Ti.95(Mg1/3Nb2/3).05O6 ceramic sintered at 1550?°C.  相似文献   

9.
(0.974−x)(K0.5Na0.5)NbO3–0.026Bi0.5K0.5TiO3xSrZrO3 lead-free piezoelectric ceramics have been prepared by the conventional solid state sintering method. Systematic investigation on the microstructure, crystalline structures as well as electrical properties of the ceramics was carried out. With the addition of SrZrO3, the rhombohedral–orthorhombic phase transition temperature of the ceramics increases. Both the rhombohedral–orthorhombic and orthorhombic–tetragonal phase transitions of the ceramics were modified to be around room temperature when x~0.05, and as a result remarkably strong piezoelectricity has been obtained in 0.924(K0.5Na0.5)NbO3–0.026Bi0.5K0.5TiO3–0.05SrZrO3 ternary system, whose piezoelectric parameters were d33=324 pC/N and kp=41%.  相似文献   

10.
(1−x)BaTiO3xBi0.5Na0.5TiO3 (BT–BNT) ceramics were prepared by the solid-state reaction method. With an increase of BNT content, both the Curie temperature and the room temperature resistivity increased. At 1 mol% BNT addition, the sample was not semiconducting, due to Bi2O3 volatilization resulting from the decomposition of pre-calcined BNT during sintering. Appropriate extra Nb2O5 doping in the raw materials could offset Bi2O3 volatilization and neutralize the redundant acceptor Na+ ions. When the extra Nb2O5 content was 0.6 mg, the sample room-temperature resistivity was 6.3×103 Ω cm, with the Curie point about 135 °C and a high PTC effect of ∼3 orders of magnitude.  相似文献   

11.
Phase formation of REBa2Cu3O7−δ (RE: Y0.5Gd0.5, Y0.5Nd0.5, Nd0.5Gd0.5) superconductors synthesised via co-precipitation (COP) method were investigated by thermogravimetric analysis (TGA), differential thermal analysis (DTA) and X-ray diffraction (XRD) analysis. All samples showed identical thermal decomposition behaviour from the thermogram in which 5 major weight losses were observed. However, XRD of the samples at different heat treatment temperatures showed different diffraction patterns indicating different thermolytic processes. Meanwhile, transmission electron microscopy and surface area analysis revealed that the powders obtained from COP have particle sizes ranging from 7 to 12 nm with relatively large surface area. Molar ratios of prepared samples obtained were near to the theoretical values as confirmed by elemental analyses using X-ray fluorescence (XRF). The TC(R=0) for sintered YGd, YNd and NdGd were 87 K, 86 K and 90 K, respectively. Surface morphological study via scanning electron microscope showed the structures of samples were dense and non porous.  相似文献   

12.
Effects of compressive stress on the ferroelectric properties of ceramics in PZT–PZN systems were investigated. (1  x)Pb(Zr1/2Ti1/2)O3(xPb(Zn1/3Nb2/3)O3 or (1  x)PZT–(x)PZN (x = 0.1–0.5) ceramics were prepared by a conventional mixed-oxide method. The ferroelectric properties under compressive stress of the PZT–PZN ceramics were observed at stress levels up to 170 MPa using a compressometer in conjunction with a modified Sawyer–Tower circuit. It was found that with increasing compressive stress the area of the ferroelectric hysteresis (P–E) loops, the saturation polarization (Psat), the remanent polarization (Pr), and the coercive field (Ec) decreased. These results were interpreted through the non-180° ferroelectric domain switching processes.  相似文献   

13.
Multiferroic ceramics in BaO–Y2O3–Fe2O3–Nb2O5 system were synthesized and their dielectric, ferroelectric and magnetic properties were evaluated. XRD results showed that the ceramic composite consists of a major phase of tetragonal tungsten bronze structured Ba2YFeNb4O15, and minor phases of monoclinic YNbO4 and hexagonal Ba3Fe2Nb6O21. Three dielectric relaxations were observed in the temperature range from 125 to 575 K. The relaxor dielectric behavior in the temperature range from 125 to 350 K was attributed to the random occupation of Fe3+ and Nb5+ ions at B site of the tungsten bronze structure. The electrode polarization and the inhomogeneous structure contributed to the high-temperature and middle-temperature dielectric relaxations, respectively. Both the ferroelectric hysteresis loop and the magnetic hysteresis loop were measured, which suggested that the synthesized ceramic composite was a promising candidate of multiferroics.  相似文献   

14.
Polycrystalline samples of Ba1?xCaxTi0.975(Nb0.5Yb0.5)0.025O3 (where x = 0.15, 0.2 and 0.3, abbreviated as BCTYN) were prepared by the conventional solid state reaction method. The effect of calcium (Ca) substitution in BaTi0.975(Nb0.5Yb0.5)0.025O3 (abbreviated as BTYN25) on the structural, dielectric, piezoelectric and ferroelectric properties and electro-caloric effects (ECE) was investigated. X-ray diffraction (XRD) results at room temperature showed that the BCTYN samples in the composition x < 0.3 exhibited a pure tetragonal perovskite structure. Dielectric measurements showed a classical ferroelectric behavior for all samples. With the increase of the Ca content, the Curie temperature (TC) was still maintained with a small shift towards low temperature. The evolution of the Raman spectra was studied as a function of compositions and temperatures. The Raman bands confirmed the structure and the phase transition of the BCTYN ceramics. By adding Ca, the piezoelectric properties and the remanent polarization (Pr) are relatively maintained for the compositions x = 0.15 and x = 0.2. A piezoelectric coefficient of d33 = 130 pC/N and a planar electromechanical coupling factor of kp = 28% were obtained for these compositions. Two different methods were used to calculate the electro-caloric coefficients of the BCTYN ceramics. The incorporation of Ca was found to enhance the electro-caloric strength (ξ = ΔTE) within a broad temperature range with a best value of ξ = 0.2?Kmm/kV for x = 0.2.  相似文献   

15.
Lead-free high-temperature ceramics with compositions of 0.71BiFe1−x(Zn1/2Ti1/2)xO3–0.29BaTiO3 (BFZTx–BT, x=0–0.05 mol fraction) were fabricated by a conventional solid state reaction method. The effect of Bi(Zn1/2Ti1/2)O3 (BZT) addition on the microstructure, electrical properties, relaxor behavior, and temperature stability has been studied. XRD patterns revealed that all compositions formed a single perovskite phase of pseudo-cubic crystal structure. The grain size was slightly affected by BZT addition. The diffuse phase transition and strong frequency dispersion of dielectric permittivity are observed for BZT modified ceramics. The addition of BZT into BFZTx–BT was also found to affect the piezoelectric properties and temperature stability of the ceramics with maximum values observed for x=0.5% and 1% BFZTx–BT compositions, respectively. The optimum piezoelectric properties with d33=163 pC/N, together with high-temperature stability with a depolarization temperature Td∼380 °C, reveal the BFZTx–BT ceramics to be promising high-temperature Pb-free piezoelectric materials.  相似文献   

16.
Synthesis and characterization of Cu0.5Tl0.5Ba2(Ca2−yMgy)(Cu0.5Zn2.5)O10−δ (y=0, 1.0, and 1.5) superconductor with 0%, 50%, and 75% Mg-doping at the Ca sites are reported. The samples were synthesized by solid-state reaction and characterized by X-ray diffraction (XRD), dc-resistivity (ρ) and fluctuation induced conductivity (FIC) analysis. The zero resistivity critical temperature {Tc(R=0)} was decreased with the increase of Mg-doping at Ca sites. The microscopic parameters such as the cross-over temperature (To), zero temperature coherence length {ξc(0)} and interlayer coupling (J) were deduced from FIC analysis. According to Aslamazov Larkin equations, a distinct cross-over temperature (To1) from three-dimensional (3D) to two-dimensional (2D) fluctuation induced conductivity regions was observed in all samples. Another cross-over temperature (To2) from 2D to zero-dimensional (0D) fluctuations was also witnessed. FIC analysis revealed the deterioration of superconductivity with increased Mg-content.  相似文献   

17.
Silicon nitride ceramics were sintered using Y2O3–Al2O3 or E2O3–Al2O3 (E2O3 denotes a mixed oxide of Y2O3 and rare-earth oxides) as sintering additives. The intergranular phases formed after sintering was investigated using high-resolution X-ray diffraction (HRXRD). The use of synchrotron radiation enabled high angular resolution and a high signal to background ratio. Besides the appearance of β-Si3N4 phase the intergranular phases Y3Al5O12 (YAG) and Y2SiO5 were identified in both samples. The refinement of the structural parameters by the Rietveld method indicated similar crystalline structure of β-Si3N4 for both systems used as sintering additive. On the other hand, the intergranular phases Y3Al5O12 and Y2SiO5 shown a decrease of the lattice parameters, when E2O3 was used as additive, indicating the formation of solid solutions of E3Al5O12 and E2SiO5, respectively.  相似文献   

18.
Lead-free piezoelectric ceramics of (1 − x)(Bi0.5Na0.5)0.94Ba0.06TiO3xBa(Zr0.04Ti0.96)O3 (abbreviated as BNBT–BZT100x, wherein x from 0 to 10 mol%) were fabricated. We have studied effects of amount of BZT content on the electrical properties and microstructures. X-ray diffraction analysis indicates that a solid solution is formed when BZT diffuses into the BNBT lattice, and further the crystal structure of sintered hybrid changes from rhombohedral to tetragonal symmetry along with increasing BZT content. Piezoelectric property measurements reveal that the BNBT–BZT4 ceramics has the highest piezoelectric performance, for example, the piezoelectric constant d33 reaches to 167 pC/N and planar electromechanical coupling factor kp is up to 0.27. In addition, the effect of Bi2O3 on the electrical properties and microstructure of the BNBT–BZT4 ceramics have also been studied, and found that the doping of Bi enhances the piezoelectric properties of ceramics.  相似文献   

19.
Solid solution (1 − x)Pb(Mg1/3Nb2/3)O3xPbTiO3 shows high dielectric constant near room temperature and is an ideal capacitor material. The composition 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3, which is located near the morphotropic phase boundary, were densified by the spark-plasma-sintering method at an ultra-low temperature (700 °C). Dielectric constant measurement shows that the thus prepared sample shows higher dielectric constant at room temperature and good temperature stability in a wide temperature range. The behavior is much different from that of samples sintered by conventional method and could be ascribed to size effect.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号