首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用超音速火焰喷涂(HVOF)工艺在35钢基体上制备了WC-10Ni涂层和WC-12Co涂层,研究了镍、钴这两种粘结剂对WC涂层的显微硬度、摩擦系数和抗磨粒磨损性能的影响,采用扫描电子显微镜观察涂层磨损前后的表面形貌,探讨了WC涂层的磨粒磨损机理。结果表明,以HVOF方法制备的2种WC涂层均有较高的显微硬度,WC-10Ni涂层和WC-12Co涂层与SiC砂纸摩擦副之间的干摩擦系数相差不大。2种涂层在低载荷下均有较好的抗磨粒磨损性能,但在较高载荷下WC-12Co涂层的抗磨性明显优于WC-10Ni涂层。2种涂层的磨粒磨损形式主要为均匀磨耗磨损,磨损机理以微切削和微剥落为主。WC-12Co涂层的磨损表面损伤较轻微,综合性能优于WC-10Ni涂层。  相似文献   

2.
The (AlCoCrFeNi)1-X(WC-10Co)X composite coatings were fabricated by HVOF spraying and their microstructures, mechanical properties and cavitation erosion behaviors were tested. The effects of WC-10Co on the cavitation erosion mechanisms were discussed by compared the differences of volume losses and eroded surface morphologies between the coatings. The cavitation erosion resistance of the coatings was about 3 times as that of the 06Cr13Ni5Mo steel. With the addition of WC-10Co, the cavitation erosion resistance of the coating was slightly increased. In the initial stage of cavitation erosion test, the cavitation erosion damage was concentrated on the interface, which was caused by the uncoordinated deformation and poor mechanical properties of the interface between HEA and WC-10Co. When the WC-10Co distributed below the HEA region, the WC-10Co played a strong supporting role and improved the impact resistance of the HEA region. The cavitation erosion mechanism of the HEA1 coating was lamellar spalling. The cavitation erosion mechanisms of the HEA2 and HEA3 coatings were particles spalling and lamellar spalling.  相似文献   

3.
《Ceramics International》2017,43(2):2123-2135
In this research, the nanostructured WC-17NiCr cermet coatings were developed using the high velocity oxy-fuel (HVOF) thermal spraying processes on ACI CD4MCu cast duplex stainless steel substrates, widely used in pump industry for abrasive wear protection of surfaces. The coatings, sprayed by both robotic and manual methods, had two different fuel (methane) to oxygen ratios (FTOR), namely 0.68 and 0.62. Using different analytical and microstructural techniques, the microstructural characteristics of the powder particles and mechanical, microstructural, and tribological properties of the coatings were determined. Different morphologies were assigned to sprayable particles, namely spherical, apple, donut, irregular, and mixed. It was revealed that the rate of WC decarburization had increased with increasing the FTOR. In contrast, the scanning electron microscopy and image analyses showed that the lowest porosity percentage was obtained for the robotically-sprayed coating with 0.68 FTOR. The Vickers microhardness increased along with fracture toughness, which can be attributed to the effect of the ‘duplex structure’ associated with the particle outer coating of Co and is a novelty in the research. The pin-on-disk reciprocal sliding wear tests at various loadings had shown different wear rates in the coatings. It was inferred that the wear performance was improved with the microstructural homogeneity, hardness, and the fracture toughness in the coatings. In all coatings, lower coefficient of friction (COF) was observed at higher loads. Finally, the wear mechanisms involved in the wear processes were identified as deformation and removal of the binder, fracture and pullout of the carbide particles, and delamination and spallation of the splats.  相似文献   

4.
Atmospheric plasma spraying of WC coatings is typically characterized by increased decarburization, with a consequent reduction of their wear resistance. Indeed, high temperature and oxidizing atmosphere promote the appearance of brittle crystalline and amorphous phases. However, by using a high helium flow rate in a process gas mixture, plasma spraying may easily be optimized by increasing the velocity of sprayed particles and by reducing the degree of WC dissolution. To this purpose, a comparative study was performed at different spray conditions. Both WC–Co powder and coating phases were characterized by X-ray difraction. Their microstructure was investigated by scanning electron microscopy. Mechanical, dry sliding friction, and wear tests were also performed. The wear resistance was highly related to both microstructural and mechanical properties. The experimental data confirmed that high-quality cermet coatings could be manufactured by using optimized Ar–He mixtures. Their enhanced hardness, toughness, and wear resistance resulted in coatings comparable to those sprayed by high velocity oxygen-fuel.  相似文献   

5.
《Ceramics International》2019,45(11):13934-13941
Cobalt matrix carbides are favorite cases of wear and corrosion-resistant coatings. Among thermal spray processes the high-velocity oxy-fuel (HVOF) spraying is a popular choice because of its unique properties. In this paper the effect of particles’ temperature on the porosity, corrosion as well as wear behavior of high-velocity oxy-fuel (HVOF) thermally sprayed WC-12Co coating has been studied. The temperature of particles was measured using a Spray-Watch diagnostic system. Also the scanning electron microscopy (SEM), image analysis, and X-ray diffraction (XRD) were used for examining the powder and the coating. The corrosion potential and corrosion current density was evaluated using potentio-dynamic polarization test. Results show that the porosity is affected by thermal flow on the coating surface. Besides, a higher particle temperature resulted in achieving more amorphous phases and eventually the higher corrosion resistance. Sample A was coated with an impact temperature of 2012.4 °C. Although the porosity was higher than other sprayed samples (1.7%), the higher content of amorphous phase led to recording a higher corrosion resistance (64.3E-6A). Sample B was coated with an impact temperature of 1880 °C for which the Jcorr was 67.2E-6 A. Sample C was sprayed with a low impact temperature of 1702 °C for which a surface porosity of 1% and the low corrosion resistance of 79.5E-6A were recorded. Based on the experiments it was concluded that for the WC-12Co coating the corrosion resistant phases have the dominant influences on the corrosion resistance.  相似文献   

6.
A WC–12Co coating was sprayed on H13 hot work mould steel using a high velocity oxy fuel (HVOF). The surface and cross–section morphologies, chemical compositions, and phases of obtained coatings were analyzed using a field emission scanning electron microscope (FESEM), energy dispersive spectrometer (EDS), and X–ray diffraction (XRD), respectively. The friction–wear properties were investigated using a wear test, the wear mechanism of WC–12Co coating was also discussed. The results show that the WC–12Co coating primarily is composed of WC hard phase with high hardness and Co as a binder, which is evenly distributed on the coating surface, no atom–rich zones. There is no W3O phase appearing in the HVOF spraying, showing that the WC–12Co coating has high oxidation resistance, the new phases of W2C and C are produced due to the decarburization of WC. The coating thickness is ~200 μm, which is combined the substrate with the mechanical binding and local micro–metallurgical bonding. The average coefficient of friction (COF) of WC–12Co coating is 0.272, showing good friction performance, the wear mechanism is primarily abrasive wear, accompanied with fatigue wear.  相似文献   

7.
Bonding strength is one of the most important properties of plasma sprayed coatings, especially ceramic coatings on complexly shaped light alloys, which is mainly determined by the properties of in-flight particles and their flattening behaviors on substrate surface. Consequently, the influence of current, voltage, primary gas flow rate and injector angle on temperature and velocity of in-flight alumina particles and morphology of splats on Al alloy with plasma arc-heat treatment (PA-HT) were investigated in detail by DPV Evolution, optical microscope and 3D non-contact surface mapping profile. The bonding strength, hardness and wear behavior of corresponding alumina coatings were measured by universal testing machine, nano-indentation test and wear test. Results showed that particle temperature and velocity increased with increase of input current and voltage, while their trends were reverse with increasing primary gas flow rate. The droplets could melt Al alloy surface and penetrate into its interior that greatly affected the morphology and corresponding shape factor (SF) of splats. Moreover, reducing injector angle caused droplets to glide on substrate surface and then to form “sole-like” splats. The morphology change of these splats obviously influenced the interfacial bonding strength, compactness, hardness and wear resistance of alumina coatings.  相似文献   

8.
With widespread applications of hard ceramic/cermet coatings as wear-resisting materials, it is becoming pertinent to study their responses to hydro-abrasive erosion (HAE) and cavitation-silt erosion (CSE) in different multiphase flow conditions. In view of this, the HAE and CSE behaviors of a high-velocity oxygen-fuel (HVOF) sprayed WC-10Ni coating are explored on a rotating disk rig facility for different flow velocities (FV) and sand concentrations (SC) in the present study. The obtained findings show that the WC-10Ni coating possesses higher HAE and CSE resistances than those of the 1Cr18Ni9Ti stainless steel in a full range of FV and SC. A higher FV and SC helps to cause more severe HAE and CSE degradation for both the WC-10Ni coating and the 1Cr18Ni9Ti stainless steel. The significant factor promoting the influences of FV and SC on material degradation is cavitation erosion. The HAE process of the WC-10Ni coating mainly includes the pull-out of hard phase grains accompanied by micro-cutting and scoring of the soft binder matrix as well as the fracturing of hard phase grains. With the increase in the FV and SC, the WC-10Ni coating experiences the CSE process of erosion pits, scoring of the soft binder matrix, fracturing of hard phase grains, crater formation, coating spalling, and isolation of hard phase grains.  相似文献   

9.
《Ceramics International》2015,41(7):8904-8914
Plasma sprayed ceramic coatings can be used in turbine engines as thermal barrier or abradable coatings, in order to improve the durability of the components as well as the efficiency. The presence of nanostructures, deriving from partial melting of agglomerated nanostructured particles, represents an interesting technological solution in order to improve their functional characteristics. In this work nanostructured yttria stabilized zirconia (YSZ) coatings were deposited by air plasma spraying (APS). The influence of the main process parameters on their microstructural, mechanical and tribological properties was investigated by scanning electron microscopy (SEM), indentation techniques at micro- and nano-scale and wear tests, respectively. Their porous microstructure was composed of well melted overlapped splats and partially melted nanostructured areas. This bimodal microstructure led to a bimodal distribution of the mechanical properties. An increase of plasma power and spraying distance was able to produce denser coatings, with lower content of embedded nanostructures, which exhibited higher elastic modulus and hardness as well as lower wear rate.  相似文献   

10.
HVAF thermal spraying has the characteristics of low spraying temperature, high coating density, and strong corrosion resistance. It is widely used in the aerospace, iron–steel metallurgy, national defense and military industry, petrochemical industry, and other fields for manufacturing protection and repair strengthening, which has achieved significant economic benefits. In this study, a numerical model of HVAF thermal spraying on a circular roll was established by the computational fluid dynamics method. The characteristics of the spraying flame, evolution of the gas composition mass fraction, and influence of the spraying parameters on particle flight behaviors were calculated and revealed. Based on the dynamic mesh method, the effect of roll speed on the spraying flame characteristics and particle flight behaviors was analyzed. Calculations show that the spraying flame is extruded at the Laval nozzle and the speed rapidly increases to 805 m/s, which increases to a supersonic speed through the barrel. The flame flow rises rapidly reaching the surface of the roll, which is 780 m/s. The highest temperature is in the combustion chamber, and the flame temperature of the airshed is a damped vibration. The flame covers the surface of the roll to preheat it, and the flame temperature there decreases layer by layer from the inside to outside. The particle diameter significantly effects the powder flight behavior. The flame velocity increases with the barrel length increasing. The flame temperature up to the peak when the barrel length is 190 mm. As the rotation speed of the roll increases, the temperature, velocity, and pressure of the flame flow on the roll surface change in a certain extent. The particle spatter will be increased with the rotational speed increasing of the roll, which little affects the particle temperature.  相似文献   

11.
为了解决装备核心零部件因磨损、消除腐蚀等带来的尺寸超差问题,制作超音速火焰喷涂316L不锈钢涂层性能试样,对试样涂层的形貌、硬度、耐蚀性开展试验检测研究。结果表明,涂层具有与25Cr3MoA接近的硬度和比30CrMnSiNi2A更好的耐蚀性能。由此,提出采用超音速火焰喷涂316L不锈钢涂层进行零件尺寸修复,制定了可行的修理方案和技术路线,确定了修理工序和参数,形成了相关技术文件,用于指导零件尺寸修复,并在油泵轴和肩轴两类零件上成功应用和装机验证,其性能良好,质量安全。  相似文献   

12.
Ag–BaF2?CaF2–Cr3C2–NiCr composite powders were prepared by physically blending commercial BaF2?CaF2–Cr3C2–NiCr and Ag powders. Ag–BaF2?CaF2–Cr3C2–NiCr composite coatings were deposited on Inconel 718 alloy substrate by high velocity oxy-fuel (HVOF) spraying. The friction and wear behavior of the coatings under dry sliding against Si3N4 balls from 25 °C to 800 °C was evaluated with a ball-on-disk high temperature tribometer. The microstructure and composition of the samples were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectrometer. Results showed that the composite coatings were mainly composed of hard phase of Cr3C2, binder phase of NiCr, high-temperature lubrication phase of fluorides and low-temperature lubrication phase of Ag. The fluorides existed in the forms of both crystal particles and amorphous state, while the silver featured as typical thermally sprayed splats. Due to the high flame temperature, some fluorides have been oxidized to chromates and around 30 wt% of Ag was lost during spraying. In addition, it was found that Ag content had an important influence on the composite coating, and an appropriate dosage of metallic silver could effectively improve the tribological performance of the coating. The generation of AgCrO2 at moderate (500 °C and 650 °C) temperature and BaCrO4 at high temperature (800 °C) could contribute to the decline in friction coefficients and wear rates of Ag–BaF2?CaF2–Cr3C2–NiCr coatings.  相似文献   

13.
Corrosion is the deterioration of materials by chemical interaction with their environment. In the oil and gas industry, corrosion of the pipelines and other equipment is one of the leading causes of failure and the corrosion-related costs are very high. Hence, corrosion protection is an essential requirement. In this study, the objective is to analysis of the corrosion protection behavior of spray Alumina-Titania (Al2O3-TiO2) oxide ceramic coating on carbon steel pipes C45 using two different thermal spray coatings processes. These two different thermal spraying coating, High velocity oxy-fuel (HVOF) and plasma thermal spraying techniques can be used instead of extensive treatment by expensive chemical formation of coatings on pipelines and equipment to improve or restore a component's surface properties or dimensions and to protect them from corrosion. Molten or semi-molten ceramic composite powders are sprayed on the surface in order to produce a dense coating layer. FESEM of coated samples showed that a high temperature of plasma coating method end in melting the ceramic powders and creation of completely melted regions on the coated samples’ surface compared to HVOF coating techniques. Corrosion testing of coated samples in seawater (3.5% NaCl) was conducted within 30 days. Electrochemical impedance spectroscopy (EIS) as well as potentiodynamic polarization outcomes represented that the corrosion resistivity of plasma coating technique for this type of ceramic composite is better than HVOF coating technique. However, both types of coating techniques are protecting the substrate against seawater.  相似文献   

14.
In order to enhance wear resistance of cold work molds, WC−10Co4Cr coating was fabricated on Cr12MoV steel by laser cladding. The morphologies, chemical compositions, and phases of obtained coatings were analyzed using a scanning electron microscopy (SEM), energy disperse spectroscopy, and X−ray diffraction, respectively. The effect of laser power on the tribological performance was analyzed using a ball−on−plate friction machine, and the wear mechanism was also discussed. The results show that the WC−10Co4Cr coating is composed of WC and Co6W6C phases, and the average hardness of coating cross−sections fabricated at the laser power of 1200, 1500, and 1800 W was 1296, 1375, and 1262 HV0.5, respectively, in which that fabricated at the laser power of 1500 W is the highest among the three kinds of coatings. The average coefficients of friction of coatings fabricated at the laser power of 1200, 1500, and 1800 W are 0.61, 0.52, and 0.59, respectively; and the corresponding wear rates are 64.38, 35.38, and 123.92 μm3•N−1•mm−1, respectively, showing that the coating fabricated at the laser power of 1500 W has best friction reduction and wear resistance. The wear mechanism of WC−10Co4Cr coating is fatigue wear and abrasive wear, which is contributed to the increase of hard WC mass fraction.  相似文献   

15.
《Ceramics International》2020,46(10):15915-15924
To reduce the friction coefficient of WC-17Co wear-resistant coatings, Graphene oxide were used to mix with WC-17Co powder. The SEM, EDS and Raman results were used to analyze the morphology and phase composition of graphene oxide in the powder and coating obtained by plasma spraying processes. The mechanical properties of the coatings were studied by using a microhardness tester and a universal testing machine. The friction and wear properties of the coatings were studied by using a UMT-2 friction and wear tester. The results show that among the pulverization processes, the spray granulation process can achieve a stronger and more uniform adhesion of graphene oxide on the surface of WC-17Co particles, and the graphene oxide content in the coating is higher. Graphene is still embedded in the coating as transparent, thin sheets. The bonding strength is approximately 63 MPa, the hardness is approximately 931 HV0.1, and the friction coefficient of the graphene oxide coating is reduced by approximately 22% compared to that of the coating without graphene. The formation of lubrication films in the micro-area improves the self-lubrication and antiwear effects.  相似文献   

16.
火力发电是我国的主要发电方式,在燃用煤、生物质等固体燃料时会面临锅炉换热面的冲蚀磨损或腐蚀问题,导致管道失效停炉,严重影响了电厂的安全稳定运行。超声速火焰(HVOF)喷涂作为热喷涂工艺的一种,可以通过在换热管道表面添加防护涂层来缓解磨损或腐蚀问题。因其制备的涂层具有与基体结合强度高、孔隙率低等优异的特点,在锅炉换热面的耐磨损耐腐蚀方面研究及应用前景广阔。综述了HVOF喷涂的发展、工艺流程以及涂层的特性,并重点总结了用于提升锅炉换热面耐磨损耐腐蚀性能的HVOF涂层材料,以及不同材料应用时需要考虑的环境因素。最后从工艺优化、材料进步以及实验方法创新三个方面对HVOF工艺在锅炉换热面上的应用做出展望。  相似文献   

17.
In this study, three kinds of WC-based cermet coatings including WC–CoCr coating, WC–Ni coating and WC–Cr3C2–Ni coating were prepared by the high-velocity oxygen-fuel (HVOF) spraying process. Scanning electron microscopy (SEM), energy disperse spectroscopy (EDS) and Vickers hardness tester were used to analyze the microstructure and mechanical properties of these coatings. The WC–CoCr coating presented the highest average microhardness of 1205 HV0.3, and then followed by the WC–Cr3C2–Ni coating (1188 HV0.3) and the WC–Ni coating (1105 HV0.3). The abrasive wear behavior of the WC-based coatings under the conditions of different applied loads and sediment concentrations were studied by a wet sand-rubber wheel tester. The results indicated that the abrasive wear loss rates of all the coatings increased with the increment of applied load or sediment concentration. In addition, the coatings with higher microhardness appeared to have higher abrasive wear resistance. The abrasive wear resistance of the WC-based coatings was 4–90 times higher than that of AISI 304 stainless steel under the same testing condition. The abrasive wear mechanism of the WC-based coatings was deduced to be the extrusion and removal of binder phases, as well as the fragmentation and peel-off of hard phases.  相似文献   

18.
Dense environmental barrier coatings (EBCs) are an essential prerequisite to exploit the advantages offered by SiC-based fiber reinforced ceramic matrix composites (CMCs) to increase efficiency in gas turbines. Today's state-of-the art materials for application as EBCs are rare-earth (RE) silicates which, however, form amorphous phases upon rapid quenching from the melt. This makes their processing by thermal spray a challenge. Recently, high velocity oxygen fuel (HVOF) spraying was proposed as potential solution since the melting degree of the feedstock can be controlled effectively. This work studies the deposition of ytterbium disilicate (YbDS) at short stand-off distances and variant total feed rates and oxy-fuel ratios of the working gas. It was found that the overall degree of crystallinity could be kept at high level above 90%. The kinetic energy transferred by impinging particles was found to be an effective parameter to control the densification of the coatings. Porosities well below 10% were achieved while fully dense coatings were impeded due to the progressive accumulation of stresses in the coatings.  相似文献   

19.
HVOF sprayed WC based cermet coatings have been widely used in industries as barriers against wear and hydrodynamic cavitation due to their high hardness and relatively high toughness. However, cracking of the coatings can occur during coating production or in service, which can reduce operational performances. It can be difficult to assess the performance impact due to cracks within the coating and as to whether the cracked coatings should be resprayed or removed from service. In this work, artificial cracks of different widths were introduced to liquid fuel HVOF sprayed WC-12Co coating through uniaxial tension of the coated steel substrate to assess the implications of such cracking. Tribological performances of the cracked coatings were examined using rubber wheel dry abrasion, ‘ball on disc’ sliding wear, and ultrasonic cavitation erosion. The results show that the crack deteriorates the abrasive wear resistance of the coating at the initial stage due to preferable mass loss at the cracks. However, after 30?min of abrasion, all the cracked coatings showed the same wear rate as compared to the non-cracked coating, with the abrasive wear resistance acting independent to the crack characteristics. Because the cracks could store wear debris and thus minimize the debris induced abrasion to the coating surface during sliding wear test, both improvement in wear resistance and reduction in coefficient of friction (COF) were detected in the cracked coatings. During the cavitation test, it was found that the mass loss of the specimen increased significantly (up to 75%)with crack width and density suggesting that the crack presence greatly deteriorated the cavitation resistance of the cermet coatings.  相似文献   

20.
Thick coatings of barium hexaferrite with the compositions BaFe12O19 and BaCoTiFe10O19 were prepared using high-velocity oxygen-fuel (HVOF) spraying technology. Nanocrystalline precursors embedded in an amorphous matrix were obtained on both Fe and glass–ceramic substrates. To promote the crystallization of the hexaferrites, the coatings were annealed at 800°–1000°C, and single-phase coatings were obtained at 1000°C. The crystallization process was studied with X-ray powder diffraction and with electron microscopy. The magnetic measurements of the coatings were carried out in a static field and at high frequencies. The magnetization of the coatings increased with the annealing temperature to above 50 emu/g for both compositions. The coercivity of BaFe12O19 increased with the annealing temperature to above 2400 Oe, whereas the coercivity of BaCoTiFe10O19 decreased from over 800 Oe, for the as-deposited sample, to 400 Oe for the sample annealed at 1000°C. A minimum 90% absorption was calculated for the BaFe12O19 coatings with thicknesses of 0.15–0.25 mm at around 47 GHz and for the 1–4-mm-thick coatings of BaCoTiFe10O19 at 3–9 GHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号