首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel ((Bi0.5Na0.5)0.94Ba0.06)1-x(K0.5Nd0.5)xTiO3(x = 0.0, 0.02, 0.04, 0.06) lead-free ceramics (BNBT–xKN) were prepared by the solid-state reaction method. The effects of A-site (K0.5Nd0.5)2+ complex-ion substitution on their phase structure, dielectric, piezoelectric, and electromechanical properties were studied. The X-ray diffraction results indicate that all compositions are located in the morphotropic phase boundary (MPB) region where the tetragonal phase coexists with the rhombohedral phase. In addition, as the KN content increases, the ferroelectric order transform to relaxor order, which is characterized by a degeneration of maximum polarization, remnant polarization and correspondingly adjusts the ferroelectric-relaxor transformation temperature (TF-R) to room temperature. Interestingly, the disruption of ferroelectric phase caused a significant improvement of strains. A maximum strain of ~ 0.52% corresponding to normalized strain of ~ 612 pm/V appeared at 85 kv/cm for the x = 0.04 composition. Particularly, the composition of x = 0.04 exhibited high electrostrains of temperature insensitivity, which remained above 0.4% and kept within 10% from ambient temperature up to 110 °C. It can be ascribed to the coexistence of non-ergodic and ergodic states in the relaxor region. As a result, the systematic investigations on the BNBT–xKN ceramics can benefit the developments of temperature-insensitive “on-off” actuators.  相似文献   

2.
A series of (Bi0.5Na0.4K0.1)Ti0.98Nb0.02O3-xLi lead-free ceramics were fabricated using the solid-state reaction technique. The effects of Li/Nb cations on the structural and electrical properties of the ceramics were investigated. All the sintered ceramics exhibited pure perovskite structure and the average grain size increased slightly with increasing the Li content. Shape of the P-E loops illustrated the relaxor characteristic of all the samples. A giant strain of 0.4% was obtained at 60 kV/cm at x = 0.01 and the corresponding normalized strain was up to 683 pm/V, moreover, the strain exhibits excellent fatigue-resistance behavior. The giant strain can be attributed to the ferroelectric-relaxor phase transition under external driving electric field. These results indicate the sintered Li/Nb co-doped lead-free ceramics can be promising candidate for actuator applications.  相似文献   

3.
A series of (1-x)(0.7Bi0.5Na0.5TiO3-0.3Bi0.2Sr0.7TiO3)-xNaNbO3 (BNT-BST-100xNN) lead-free ceramics were fabricated using conventional solid-state reaction technique. The phase behavior, microstructure, dielectric, ac impedance and energy-storage properties of the sintered ceramics were systematically investigated. XRD patterns and surface SEM micrographs revealed the introduction of NaNbO3 didn't change the perovskite structure of BNT-BST at low doping level. The NaNbO3 doping gave rise to slimmer P-E loops and thus gained enhanced energy storage properties. Therefore, a maximum energy storage density of 1.03 J/cm3 was achieved at 85 kV/cm at x = 0.01 via increasing the dielectric breakdown strength (DBS). Temperature-dependent dielectric permittivity illustrated the enhanced relaxor characteristics, implying the long-rang ferroelectric order was further damaged due to the introduction of NaNbO3. The results above indicate the sintered ternary ceramics can be a promising lead-free candidate for energy storage capacitors.  相似文献   

4.
Lead-free Bi0.5(Na0.8K0.2)0.5TiO3 (abbreviated as BNKT) thin films were grown on Pt(111)/Ti/SiO2/Si substrates using a sol-gel/spin coating technique and were then annealed at different temperatures (350 °C, 550 °C, 750 °C and 850 °C). Analysis of the XRD patterns and FT-IR spectra were used to determine the main reactions and the phase formation process of BNKT thin films during the sol-gel process. The results show that the dielectric constant of the thin films attains a maximum at a set temperature and then decreases at higher annealing temperatures, which can be attributed to phase formation and transformation. Moreover, the morphologies of the BNKT thin films improve with the increase in grain size and the formation of distinct grain boundaries. Furthermore, through increasing the pH of the precursor solutions, the size of the sol-gel colloidal particles increases slightly and the grains formed from the corresponding solutions tend to be small and uniform.  相似文献   

5.
(1-x)(Bi0.5Na0.5)TiO3-xSrTiO3 (BNT-xST) (0 ≤ x ≤ 0.4) thin films were fabricated using a sol-gel technique on Pt(111)/Ti/SiO2/Si(100) substrates, which were investigated by piezoresponse force microscopy (PFM) and Raman spectroscopy. The composition-induced phase transition was analyzed by acquiring structural variations and the domain distribution on a local scale. Raman spectra showed phonon anomalies with peak broadening and shifting when increasing SrTiO3 (ST) concentrations were used. Changes in the domain morphology with changes in the composition were observed, and grains smaller than 0.5 µm were observed at lower concentrations of x = 0–0.25, while larger grains appeared with increasing ST contents. The switching spectroscopy PFM (SS-PFM) results supported a ferroelectric (FE) to relaxor ferroelectric (RFE) phase transition at approximately x ≈ 0.3 by means of analyzing the parameters as a function of the composition including the piezoresponse parameters of hysteresis loops (Dmax, Drem) and amplitude butterfly loops (Stotal, Sneg). Hence, these results demonstrated that the composition-driven FE to RFE phase transition behavior, which is consistent with the localized response behavior, is dependent on the ST content in bulk BNT-xST ceramics.  相似文献   

6.
《Ceramics International》2017,43(16):13612-13617
0.8Bi0.5Na0.5Ti(1-x)NbxO3−0.2Sr0.85Bi0.1TiO3 (BNT-SBT-xNb, x = 0.00, 0.01, 0.02, and 0.03) piezoelectric ceramics were prepared by traditional solid state reaction and the influence of Nb substitution on the phase structure, ferroelectric, piezoelectric, and electric-field-induced strain properties in BNT-SBT ceramics were studied. XRD results exhibited that Nb5+ ions could fully diffuse into BNT-SBT structure to form a solid solution when x = 0.01. P-E loops and S-E curves suggested that the ferroelectric phase transformed to ergodic relaxor state (FE-to-ER) with the increasing the amount of Nb additive, indicating the ferroelectric long-ranged order was disturbed by the excess of Nb. With increasing Nb doping, phase transition temperature from normal ferroelectric to ergodic relaxor (short for TF-R) could be reduced from 120 °C to 40 °C. Furthermore, for sample with x = 0.01, the normalized strain d33* got a maximum value ~571 pm/V due to the phase transition from ergodic relaxor to ferroelectric (ER-to-FE) under electric field.  相似文献   

7.
In this work, the (1-x)(0.8Na0.5Bi0.5TiO3-0.2K0.5Bi0.5TiO3)-xSrTiO3 (NKBT-xST) incipient piezoelectric ceramics with x = 0–0.07 (0ST-7ST) were prepared by the solid-state reaction method and their structural transformation and electromechanical properties were investigated as a function of ST content. As the ST content increases, the long-range ferroelectric order is disrupted, and the ferroelectric-relaxor phase transition temperature (TFR) shifts to around room temperature for NKBT-5ST ceramics, accompanied by a relatively high electrostrain of 0.3% at 6 kV/mm. The large strain response associated with the vanished ferroelectric properties around TFR can be attributed to the reversible relaxor-ferroelectric phase transition. The electric-field-temperature (E-T) phase diagrams were established, and the transition between the two field-induced long-range ferroelectric states were found to take place via a two-step switching process through an intermediate relaxor state. The threshold electric field to trigger the conversion between ferroelectric state and relaxor state depends strongly on the dynamics of polarization relaxation, which is influenced by temperature and composition.  相似文献   

8.
Lead-free Bi0.5Na0.5TiO3 (BNT) piezoelectric thin films were deposited on Pt/TiOx/SiO2/Si substrates by Sol-Gel method. A dense and well crystallized thin film with a perovskite phase was obtained by annealing the film at 700 °C in a rapid thermal processing system. The relative dielectric constant and loss tangent at 12 kHz, of BNT thin film with 350 nm thickness, were 425 and 0.07, respectively. Ferroelectric hysteresis measurements indicated a remnant polarization value of 9 μC/cm2 and a coercive field of 90 kV/cm. Piezoelectric measurements at the macroscopic level were also performed: a piezoelectric coefficient (d33effmax) of 47 pm/V at E = 190 kV/cm was obtained. The piezoresponse force microscopy data confirmed that BNT thin films present ferroelectric and piezoelectric behavior at the nanoscale level.  相似文献   

9.
《Ceramics International》2016,42(12):13783-13789
Lead-free (1−x)(0.0852Bi0.5Na0.5TiO3–0.12Bi0.5K0.5TiO3–0.028BaTiO3)–xCaZrO3 piezoelectric ceramics (BNT−BKT−BT−xCZ, x=0, 0.01, 0.02, 0.03, 0.04 and 0.05) were prepared by using a conventional solid-state reaction method. The effects of CZ-doping on the structural, dielectric, ferroelectric and piezoelectric properties of the BNT−BKT−BT−xCZ system were systematically investigated. The polarization and strain behaviors indicated that the long-range ferroelectric order in the unmodified BNT−BKT−BT ceramics was disrupted by the increase of CZ-doping content, and correspondingly the depolarization temperature (Td) shifted down from 109 °C to below room temperature. When x>0.03, accompanied with the drastic decrease in the remnant polarization (Pr) and piezoelectric coefficient (d33), the electric-field-induced strain was enhanced significantly. A large unipolar strain of 0.35% under an applied electric field of 70 kV/cm (Smax/Emax=500 pm/V) was obtained in the BNT−BKT−BT−0.04CZ ceramics at room temperature, which was attributed to the reversible electric-field-induced phase transition between the relaxor and ferroelectric phases.  相似文献   

10.
[0.9(0.94Na0.5Bi0.5TiO3?0.06BaTiO3)?0.1NaNbO3]-xZnO (NBT-BT-NN-xZnO, x=0, 0.5 wt%, 1.0 wt%, 1.5 wt%, and 2.0 wt%) ferroelectric ceramics were fabricated using a conventional solid-state reaction method. The effects of ZnO content on dielectric, energy-storage and discharge properties were systematically investigated. Dielectric constant and difference between maximum and remanent polarization were significantly improved by ZnO doping. Dielectric constant of NBT-BT-NN-1.0-wt% ZnO was 3218 at 1 kHz and room temperature, i.e. one time bigger than that of pure NBT-BT-NN ceramic. As a consequence, a maximum energy-storage density of 1.27 J/cm3 with a corresponding efficiency of 67% was obtained in NBT-BT-NN-1.0-wt% ZnO ceramic. Moreover, its pulsed discharge energy density was 1.17 J/cm3, and 90% of which could be released in less than 300 ns. Therefore, ZnO doped NBT-BT-NN ceramic with a large energy-storage density and short release time could be a potential candidate for applications in high energy-storage capacitors.  相似文献   

11.
In this study, the Bi-nonstoichiometric 0.99Bix(Na0.8K0.2)0.5TiO3-0.01SrTiO3 (BNKST) ceramics with x = 0.5–0.535 mol (Bi50-Bi53.5) were prepared by a conventional solid-state reaction method. The effects of Bi excess on structural transition and ferroelectric stability of BNKST ceramics were systematically investigated by the Raman spectra, dielectric analyses and electromechanical measurements. The introduction of excess Bi3+ could significantly break the long-range ferroelectric order and favor the presence of relaxor phase, then the ferroelectric-relaxor transition temperature (TFR) can be effectively tuned to around room temperature by Bi nonstoichiometry, giving rise to an enhanced room-temperature strain property. The positive strain Spos and dynamic piezoelectric constant d33* of Bi52.5 critical composition reach 0.33% and 440 pm/V, respectively at 6 kV/mm. The high recoverable strain of Bi52.5 sample can be attributed to the electric-field-induced reversible relaxor-ferroelectric phase transition. The present work may be helpful for further understanding and designing high-performance NBT-based lead-free ceramics for piezoelectric actuator applications.  相似文献   

12.
《Ceramics International》2016,42(8):9660-9666
Lead-free 0.99[(1−x)(Bi0.5Na0.5)TiO3-x(Bi0.5K0.5)TiO3]–0.01Ta piezoelectric ceramics were prepared by a conventional solid-state reaction process. The ferroelectric properties, and strain behaviors were characterized. Increase of the (Bi0.5K0.5)TiO3 content induces a phase transition from coexistence of ferroelectric tetragonal and rhombohedral to a relaxor pseudocubic phase. Accordingly, the ferroelectric order is disrupted significantly with the increase of (Bi0.5K0.5)TiO3 content and the destabilization of the ferroelectric order is accompanied by an enhancement of the unipolar strain, which peaks at a value of 0.35% (corresponding to a large signal d33 of 438 pm/V) in samples with 20 mol% (Bi0.5K0.5)TiO3 content. Temperature dependent measurements of both polarization and strain from room temperature to 120 °C suggested that the origin of the large strain is due to a reversible field-induced nonpolar pseudocubic-to-polar ferroelectric phase transformation.  相似文献   

13.
The lead-free Er3+-doped (K0.48Na0.48Li0.04)(Nb0.96Bi0.04)O3 (KNLNB-Er-x) ceramics were fabricated by conventional pressureless sintering. They possess a tetragonal perovskite phase with dense microstructure. High transmittances of the ceramics are obtained both in the visible and infrared regions. The optical band gap energies of them are 3.07–3.11 eV, close to other KNN-based materials. The relaxor-like characteristics, good dielectric, ferroelectric and piezoelectric properties of the ceramics have been obtained. The up-conversion photoluminescence spectra have been studied and obvious color-tunable emissions have been observed by modulating temperature. The fluorescence intensity ratio (FIR) value based on green emissions at 533 and 555 nm in the temperature ranging from 300 to 750 K have been investigated, giving the maximum sensitivity of ~ 0.0038 K?1. Furthermore, the FIR technique opens up a method to detect the Curie temperature of the ceramics. Owing to both optical and electrical properties, the KNLNB-Er-x transparent ceramics could be a promising candidate in the application of color-tunable solid-state lightings, optical temperature sensors, and electrical-optical coupling devices.  相似文献   

14.
The phase diagram of (1 ? x)(Bi0.5Na0.5)TiO3xSrTiO3 was completed and investigations on polarization and strain in this system were carried out. (1 ? x)(Bi0.5Na0.5)TiO3xSrTiO3-ceramics were prepared by conventional mixed oxide processing. The depolarization temperature (Td), the temperature of the rhombohedral–tetragonal phase transition (Tr–t) and the Curie temperature (Tm) were determined by measuring the temperature dependence of the relative permittivity. All solid solutions of (1 ? x)(Bi0.5Na0.5)TiO3xSrTiO3 show relaxor behavior (A-site relaxor). From XRD-measurements a broad maximum of the lattice parameter can be observed around x = 0.5 but no structural evidence for a morphotropic phase boundary was found. SEM-analysis revealed a decrease of the grain size for increasing SrTiO3-content. At room temperature a maximum of strain of about 0.29% was found at x = 0.25 which coincides with a transition from a ferroelectric to an antiferroelectric phase. The temperature dependence of the displacement indicates an additional contribution from a structural transition (rhombohedral–tetragonal), which would be of certain relevance for the existence of a morphotropic phase boundary.  相似文献   

15.
Li2CO3 has been used as a sintering aid for fabricating lead-free ferroelectric ceramic 0.93(Bi0.5Na0.5TiO3)-0.07BaTiO3. A small amount (0.5 wt%) of it can effectively lower the sintering temperature of the ceramic from 1200 °C to 980 °C. Unlike other low temperature-sintered ferroelectric ceramics, the ceramic retains its good dielectric and piezoelectric properties, giving a high dielectric constant (1570), low dielectric loss (4.8%) and large piezoelectric coefficient (180 pC/N). The “depolarization” temperature is also increased to 100 °C and the thermal stability of piezoelectricity is improved. Our results reveal that oxygen vacancies generated from the diffusion of the sintering aid into the lattices are crucial for realizing the low temperature sintering. Owing to the low sintering temperature and good dielectric and piezoelectric properties, the ceramics, especially of multilayered structure, should have great potential for practical applications.  相似文献   

16.
In this work, 25.6BaO-6.4K2O-32Nb2O5-36SiO2-xTiO2 (0 ≤ x ≤10 mol%) (BKNST) glass ceramics were synthesized by conventional melts and controllable crystallization method. The effects of different TiO2 addition on the phase composition, dielectric and energy storage properties of BKNS glass ceramics were systematically evaluated. With the TiO2 concentration increasing, a growing content of Ba2TiO4 phase was observed in the glass ceramics. The microstructures appeared to be homogenous and uniform with very low porosity through the addition of TiO2, for which the maximal breakdown strength of 2112 kV/cm and the corresponding energy storage density of 9.48 J/cm3 were obtained with x = 7.5. The extremely low dielectric loss of less than 1‰ (25 °C, 100 kHz) and the obviously improved microstructure contributed to the increased breakdown strength. In addition, the discharge power density of the glass-ceramic capacitor (x = 7.5) was investigated using the RLC charge-discharge circuit and a relatively high value of 16 MW/cm3 at 300 kV/cm was obtained.  相似文献   

17.
0.96(K0.48Na0.52)NbO3-0.03[Bi0.5(Na0.7K0.2Li0.1)0.5]ZrO3-0.01(Bi0.5Na0.5)TiO3 single crystals were grown for the first time by the solid state crystal growth method, using [001] or [110]-oriented KTaO3 seed crystals. The grown single crystal shows a dielectric constant of 2720 and polarization-electric field loops of a lossy normal ferroelectric, with Pr = 45 μC/cm2 and Ec = 14.9 kV/cm, while the polycrystalline samples with a dielectric constant of 828 were too leaky for P-E measurement due to humidity effects. The single crystal has orthorhombic symmetry at room temperature. Dielectric permittivity peaks at 26 °C and 311 °C, respectively, are attributed to rhombohedral-orthorhombic and tetragonal–cubic phase transitions. Additionally, Raman scattering shows the presence of an orthorhombic-tetragonal phase transition at ∼150 °C, which is not indicated in the permittivity curves but by the loss tangent anomalies. A transition around 700 °C in the high temperature dc conductivity is suggested to be a ferroelastic-paraelastic transition.  相似文献   

18.
The electric field-induced strain of Bi1/2(Na0.82K0.18)1/2TiO3 (BNKT) ceramics modified with BaZrO3 (BZ) was investigated as a function of composition and temperature. Unmodified BNKT ceramics revealed a typical ferroelectric butterfly-shaped bipolar S–E loop at room temperature, whose normalized strain (Smax/Emax) showed a significant temperature coefficient of 0.38 pm/V/K. As the BZ content increased in the solid solution up to 5 mol%, the ferroelectric BNKT gradually transformed to a relaxor. Finally, 5 mol% BZ-modified BNKT ceramics showed a typical electrostrictive behavior with a thermally stable electrostrictive coefficient (Q33) of 0.025 m4/C2, which is comparable to that of Pb(Mg1/3Nb2/3)O3 (PMN) ceramics that have been primarily used as Pb-based electrostrictive materials.  相似文献   

19.
A series of Ca0.61Nd0.26Ti1-x(Cr0.5Nb0.5)xO3 (CNTCNx) (0 ≤ x ≤ 0.1) ceramics were prepared via a solid state reaction method. All CNTCNx samples were crystallized into the orthorhombic perovskite structure. The SEM micrographs indicated that the average grain sizes of samples depended on (Cr0.5Nb0.5)4+ concentration. And as (Cr0.5Nb0.5)4+ concentration increased, the average grain size of samples decreased significantly. The short range order (SRO) structure and structural distortion of oxygen octahedra proved to exist in CNTCNx crystals from Raman spectra analysis results. The microwave dielectric properties highly depended on the B-site bond strength, oxygen octahedra distortion, reduction of Ti4+ to Ti3+ and internal strain η. At last, the CNTCN0.06 ceramic sintered at 1400 °C for 4 h exhibited good and stable comprehensive microwave dielectric properties of εr = 92.3, Q × f = 13,889 GHz, τf = + 152.8 ppm/°C.  相似文献   

20.
Low-firing (Zn0.9Mg0.1)1?xCoxTiO3 (x = 0.02–0.10) (ZMCxT) microwave dielectric ceramics with high temperature stability were synthesized via conventional solid-state reaction. The influences of Co2O3 substitution on the phase composition, microstructure and microwave dielectric properties of ZMCxT ceramics were discussed. Rietveld refinement results show the coexistence of ZnTiO3 and ZnB2O4 phases at x = 0.02–0.10. (Zn0.9Mg0.1)1?xCoxTiO3 ceramic with x = 0.06 (ZMC0.06T) obtains the best combination microwave dielectric properties of: εr = 21.58, Q × f = 53,948 GHz, τf = ? 54.38 ppm/°C. For expanding its application in LTCC field, 3 wt% ZnO-B2O3-SiO2 (ZBS) and 9 wt% TiO2 was added into ZMC0.06T ceramic, great microwave dielectric properties were achieved at 900 °C for 4 h: εr = 26.03, Q × f = 34,830 GHz, τf = ? 4 ppm/°C, making the composite ceramic a promising candidate for LTCC industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号