共查询到20条相似文献,搜索用时 15 毫秒
1.
Van-Huy Nguyen Seyed Ali Delbari Mehdi Shahedi Asl Quyet Van Le Abbas Sabahi Namini Zohre Ahmadi Mohammad Farvizi Mohsen Mohammadi Mohammadreza Shokouhimehr 《Ceramics International》2021,47(9):12459-12466
This research explores the sintering behavior and microstructure of ZrB2-based materials containing graphene nano-platelets (GNPs) and SiC whiskers (SiCw). Spark plasma sintering (SPS) process at 1900 °C was implemented to sinter the specimen, leading to a composite with 100% relative density. High-resolution transmission electron microscopy (HRTEM), field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), field emission-electron probe microanalyzer (FE-EPMA), and high-resolution X-ray diffractometry (HRXRD) were employed to study the SPSed sample, along with the thermodynamics predictions. According to the HRXRD result and microstructural observations, the sintering process was non-reactive, which was endorsed with the XPS analysis. Furthermore, graphene presented a beneficial role for eradicating the oxide impurities in the sample during the sintering. Such oxide impurities were reduced to the original phases of SiC and ZrB2, contributing to porosity removal. Nanostructural investigations revealed the formation of ultrathin amorphous interfaces (~10 nm) between ZrB2/graphene phases, disordered atomic planes in graphene platelets, and dislocations in ZrB2 grains. One reason for generating crystalline defects in the microstructure was found out to be the mismatches amongst the elastic properties of the available compounds in the system. 相似文献
2.
《Journal of the European Ceramic Society》2020,40(2):259-266
A new design of seamless joining was proposed to join SiC using electric field-assisted sintering technology. A 500 nm Y coating on SiC was used as the initial joining filler to obtain a desired transition phase of Y3Si2C2 layer via the appropriate interface reactions with the SiC matrix. The phase transformation and decomposition of the transition phase of Y3Si2C2 was designed to achieve almost seamless joining of SiC. The decomposition of the joining layer to SiC, followed up by the inter-diffusion and complete densification with the initial SiC matrix, resulted in the formation of an almost seamless joint at the temperature of 1900 °C. The bending strength of the seamless joint was 134.8 ± 2.1 MPa, which was comparable to the strength of the SiC matrix. The proposed design of seamless joining could potentially be applied for joining of SiC-based ceramic matrix composites with RE3Si2C2 as the joining layer. 相似文献
3.
Microstructures of ZrB2 ceramics consolidated by hot-pressing and spark plasma sintering were investigated by transmission electron microscopy (TEM), combining energy dispersive X-ray spectroscopy (EDX). The microstructures of both ceramics were compared. Amount of impurities was lower for ZrB2 consolidated by spark plasma sintering than for hot-pressed ZrB2. In particular, oxygen impurity was not detected even at the grain-boundaries in ZrB2 consolidated by spark plasma sintering. The cleaning effect generated on the powder surfaces during spark plasma sintering cycle was displayed. In addition, dislocations were present only in the spark plasma sintered ZrB2 ceramic, as a result of localized high stresses. 相似文献
4.
Van-Huy Nguyen Seyed Ali Delbari Zohre Ahmadi Abbas Sabahi Namini Quyet Van Le Mohammadreza Shokouhimehr Mehdi Shahedi Asl Mohsen Mohammadi 《Ceramics International》2021,47(3):3520-3528
The impact of Si3N4 and SiC additives incorporation in the microstructure and sintering behavior of TiB2-based composites were studied. Three ceramic composites including TiB2–Si3N4, TiB2–SiC, and TiB2–SiC–Si3N4 were manufactured by spark plasma sintering (SPS) at 1950 °C for 8 min under 35 MPa. The acquired ceramics were analyzed by X-ray diffractometry and scanning electron microscopy. In addition, the sintering thermodynamic was investigated using the HSC Chemistry package. X-ray diffraction patterns of the prepared ceramics revealed the in-situ formation of graphite and boron nitride in the final composites initiated from SiC and Si3N4, respectively. The thermodynamic assessments proved the role of liquid phase sintering on the sinterability enhancement of all composite samples. Field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy verified the in-situ formation of both BN and graphite components in the sample containing SiC and Si3N4 additives. Finally, the fractographical investigations clarified the transgranular breakage as the main fracture mode in the TiB2-based ceramics. 相似文献
5.
《Ceramics International》2015,41(7):8936-8944
Monolithic B4C ceramics and B4C–CNT composites were prepared by spark plasma sintering (SPS). The influence of particle size, heating rate, and CNT addition on sintering behavior, microstructure and mechanical properties were studied. Two different B4C powders were used to examine the effect of particle size. The effect of heating rate on monolithic B4C was investigated by applying three different heating rates (75, 150 and 225 °C/min). Moreover, in order to evaluate the effect of CNT addition, B4C–CNT (0.5–3 mass%) composites were also produced. Fully dense monolithic B4C ceramics were obtained by using heating rate of 75 °C/min. Vickers hardness value increased with increasing CNT content, and B4C–CNT composite with 3 mass% CNTs had the highest hardness value of 32.8 GPa. Addition of CNTs and increase in heating rate had a positive effect on the fracture toughness and the highest fracture toughness value, 5.9 MPa m1/2, was achieved in composite with 3 mass% CNTs. 相似文献
6.
Zohre Ahmadi Behzad Nayebi Mehdi Shahedi Asl Iman Farahbakhsh Zohre Balak 《Ceramics International》2018,44(10):11431-11437
Taguchi design of experiments methodology was used to determine the most influential spark plasma sintering (SPS) parameters on densification of TiB2–SiC ceramic composites. In this case, four processing factors (SPS temperature, soaking time, applied external pressure and SiC particle size) at three levels were examined in order to acquire the optimum conditions. The statistical analysis identified the sintering temperature as the most effective factor influencing the relative density of TiB2–SiC ceramics. A relative density of 99.5% was achieved at the optimal SPS conditions; i.e. temperature of 1800?°C, soaking time of 15?min and pressure of 30?MPa by adding 200-nm SiC particulates to the TiB2 matrix. The experimental measurements and predicted values for the relative density of composite fabricated at the optimum SPS conditions and reinforced with the proper SiC particle size were almost similar. The mechanisms of sintering and densification of spark plasma sintered TiB2–SiC composites were discussed in details. 相似文献
7.
Al2O3/Cu (with 30 wt% of Cu) composites were prepared using a combined liquid infiltration and spark plasma sintering (SPS) method using pre-processed composite powders. Crystalline structures, morphology and physical/mechanical properties of the sintered composites were studied and compared with those obtained from similar composites prepared using a standard liquid infiltration process without any external pressure. Results showed that densities of the Al2O3/Cu composites prepared without applying pressure were quite low. Whereas the composites sintered using the SPS (with a high pressure during sintering in 10 min) showed dense structures, and Cu phases were homogenously infiltrated and dispersed with a network from inside the Al2O3 skeleton structures. Fracture toughness of Al2O3/Cu composites prepared without using external pressure (with a sintering time of 1.5 h) was 4.2 MPa m1/2, whereas that using the SPS process was 6.5 MPa m1/2. These toughness readings were increased by 18% and 82%, respectively, compared with that of pure alumina. Hardness, density and electrical resistivity of the samples prepared without pressure were 693 HV, 82.5% and 0.01 Ω m, whereas those using the SPS process were 842 HV, 99.1%, 0.002 Ω m, respectively. The enhancement in these properties using the SPS process are mainly due to the efficient pressurized infiltration of Cu phases into the network of Al2O3 skeleton structures, and also due to high intensity discharge plasma which produces fully densified composites in a short time. 相似文献
8.
《Ceramics International》2023,49(18):29709-29718
Mechanical alloying and spark plasma sintering (SPS) were used to prepare dense SiAlCN ceramic and SiAlCN ceramic toughened by SiC whiskers (SiCw) or graphene nanoplatelets (GNPs). The influences of different reinforcements on the microstructure and fracture toughness were investigated. The SiAlCN ceramic exhibited a fracture toughness of 4.4 MPa m1/2 and the fracture characteristics of grain bridging, alternative intergranular and transgranular fracture. The fracture toughness of SiCw/SiAlCN ceramic increased to 5.8 MPa m1/2 and toughening mechanisms were crack deflection, SiCw bridging and pull-out. The fracture toughness of GNP/SiAlCN ceramic increased significantly, which was up to 6.6 MPa m1/2. GNPs played an important role in grain refinement, which resulted in the smallest grain size. Multiple toughening mechanisms, including crack deflection, crack branch, GNP bridging and pull-out could be found. The better toughening effect could be attributed to the larger specific surface area of GNPs and the appropriate interface bonding between GNPs and matrix. 相似文献
9.
Xinghong ZhangPeng Zhou Ping Hu Wenbo Han 《Journal of the European Ceramic Society》2011,31(13):2415-2423
Laminated ZrB2-SiC ceramics with residual surface compression were prepared by stacking layers with different SiC contents. The maximum apparent fracture toughness of these laminated ZrB2-SiC ceramics was 10.4 MPam1/2, which was much higher than that of monolithic ZrB2-SiC ceramics. The theoretical predictions showed that the apparent fracture toughness was strongly dependent on the position of the notch tip, which was confirmed by the SENB tests. Moreover, laminated ceramics showed a higher fracture load when the notch tip located in the compressive layer, whereas showed a lower fracture load as the notch tip within the tensile layer. The toughening effect of residual compressive stresses was verified by the appearance of crack deflection and pop-in event. The influence of geometrical parameters on the apparent fracture toughness and residual stresses was analyzed. The results of theoretical calculation indicated that the highest residual compressive stress did not correspond to the highest apparent fracture toughness. 相似文献
10.
Hao-Tung Lin Bo-Zon Liu Wei-hsio Chen Jow-Lay Huang Pramoda K. Nayak 《Ceramics International》2011,37(7):2081-2087
The densification behaviors of Al2O3–Cr2O3/Cr3C2 nanocomposites prepared by a Spark Plasma Sintering (SPS) were investigated in this work. The initial powders used for sintering were Al2O3–Cr2O3, which were prepared by metal organic chemical vapor deposition (MOCVD) in a spout bed. Different colors of the compacts such as green, purple and black were observed after densification process at different SPS temperatures from 1200 °C to 1350 °C. These changes of color were relevant to the existence of secondary phase of green Cr2O3, pink solid solution of Cr2O3–Al2O3 and black Cr3C2, which were formed under the different SPS temperature. The secondary phase of Cr2O3 retarded the processing of densification for spark plasma sintering at 1200 °C. The Cr2O3 reacted with Al2O3 to form solid solution of Cr2O3–Al2O3 and with carbon to form Cr3C2 as sintering temperature increased to 1350 °C. The characteristics of high heating rate, shorter sintering time for SPS and the formation of secondary phase of Cr3C2 effectively reduced the substrate's grain growth, making Al2O3–Cr2O3/Cr3C2 nanocomposites with small grain size. 相似文献
11.
The influence of sintering temperature and soaking time on fracture toughness of Al2O3 ceramics has been investigated. The samples were prepared by solid state sintering at 1500, 1600 and 1700 °C for different soaking time periods. The fracture toughness of the sintered samples was determined by inducing cracks using Vickers indentation technique. Microstructural investigations on fracture surfaces obtained by three point bend test mode were made and correlated with fracture toughness. Crack deflection in the samples sintered at 1500 and 1600 °C for which ranges of fracture toughness are 5.2–5.4 and 5.0–5.6 MPa m1/2 respectively, are found. The samples sintered at 1700 °C have lower fracture toughness ranging between 4.6 and 5.0 MPa m1/2. These samples have larger grains and transgranular fracture mode is predominant. The crack deflection has further been revealed by SEM and AFM observations on fracture surface and fracture surface roughness respectively. 相似文献
12.
H. Sheikh M.R. Loghman-Estarki E. Mohammad Sharifi A. Alhaji J. Shakeri 《Ceramics International》2018,44(15):18235-18242
The main objective of this work is to compare the hardness, fracture toughness, and optical transparency of MgAl2O4 spinel (magnesium aluminate), MgAl2O4 spinel/ Si3N4 nanocomposite, and the heat-treated spinel/Si3N4 nanocomposite. For this purpose, the commercial spinel nanopowder and the laboratory-made spinel/ Si3N4 nanocomposite powder were sintered using spark plasma sintering (SPS). A heat treatment at 1000?°C for 4?h was carried out on the as-sintered nanocomposite. The field emission scanning electron microscopy (FESEM), Energy dispersive X-ray (EDX) mapping, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Nanoindentation, and Vickers microhardness analyses were used to determine microstructure, elemental analysis, functional group, hardness, and indentation toughness of the samples. The results showed that the hardness and toughness of the heat-treated sample are more than those of the as-SPSed nanocomposite as much as 15.7% and 25.7%, respectively. Also, the values of optical transmission of the nanocomposite sample in the visible range (400–800?nm) and infrared region (800–2000?nm) were lower than those of pure spinel. 相似文献
13.
《Ceramics International》2016,42(9):10951-10956
A Mo/Ti3SiC2 laminated composite is prepared by spark plasma sintering at 1300 °C under a pressure of 50 MPa. Al powder is used as sintering aid to assist the formation of Ti3SiC2. The fabricated composites were annealed at 800, 1000 and 1150 °C under vacuum for 5, 10, 20 and 40 h to study the composite's interfacial phase stability at high temperature. Three interfacial layers, namely Mo2C layer, AlMoSi layer and Ti5Si3 solid solution layer are formed during sintering. Experimental results show that the Mo/Ti3SiC2 layered composite prepared in this study has good interfacial phase stability up to at least 1000 °C and the growth of the interfacial layer does not show strong dependence on annealing time. However, after being exposed to 1150 °C for 10 h, cracks formed at the interface. 相似文献
14.
《Journal of the European Ceramic Society》2014,34(4):903-913
CVD–SiC coated C/SiC composites (C/SiC) were joined by spark plasma sintering (SPS) by direct bonding with and without the aid of joining materials. A calcia-alumina based glass–ceramic (CA), a SiC + 5 wt% B4C mixture and pure Ti foils were used as joining materials in the non-direct bonding processes. Morphological and compositional analyses were performed on each joined sample. The shear strength of joined C/SiC was measured by a single lap test and found comparable to that of C/SiC. 相似文献
15.
Hailong Wang Jianyong Chen Pengfei Yu Shengping Shen 《Journal of the European Ceramic Society》2018,38(4):1112-1117
Using the stress distribution of the body containing a spherical inclusion, the stress intensity factor at the tip of the annular flaw emanating from the inclusion is formulized. Since the thermal expansion coefficient of matrix and inclusion is not matched, the residual stress is also taken into account. Introducing into the proposed temperature-dependent fracture surface energy or fracture toughness, the temperature-dependent fracture strength for ZrB2-SiC is obtained. The influence of oxidation on the fracture strength is also discussed and the analysis reveals that the oxidation has significant effect on the fracture strength under some circumstances. The calculated results are compared with the experimental data and they have very good consistency. 相似文献
16.
Junqi Shao Mian Li Keke Chang Ying Huang Donglou Ren Ji Wang Xiaobing Zhou Liu He Feng Huang Shiyu Du Jianjun Sha Zhengren Huang Qing Huang 《Journal of the European Ceramic Society》2018,38(15):4833-4841
The Y3Si2C2 coating was in-situ synthesized on the surface of SiC powders to form SiC-Y3Si2C2 core-shell structure by using a molten salt technique. Phase diagram calculations on Si-Y-C ternary phase at different temperatures well illustrated that the Y3Si2C2 phase can be stable with SiC but will be in liquid state at 1560?°C. The liquid Y3Si2C2 explained the enhanced consolidation of SiC ceramics and its disappearance after spark plasma sintering. Such Y3Si2C2 coating could not only effectively improve the sintering, but also their mechanical and thermal properties of resultant ceramics. Typically, at 1700?°C, the bulk SiC ceramic presented a mean grain size of 2.5?um and relative density of 99.5% when the molar ratio of Y to SiC is 1:4 in molten salts; the Young’s modulus, indentation hardness and fracture toughness measured by indentation test were 451.7?GPa, 26.3?GPa and 7.9?M?Pam1/2, respectively; the thermal conductivity is about 145.9?W/(m?K). Excellent thermal and mechanical properties could be associated with the fine grain size, optimized phase composition and improved grain boundary structure. 相似文献
17.
Two-step sintering was employed to consolidate nanocrystalline 8 mol% yittria stabilized zirconia processed by glycine-nitrate method. Results verified the applicability of this method to suppress the final stage of grain growth in the system. The grain size of the high density compacts (>97%) produced by two-step sintering method was seven times less than the pieces made by the conventional sintering technique. Up to ∼96% increase in the fracture toughness was observed (i.e. from 1.61 to 3.16 MPa m1/2) with decreasing of the grain size from ∼2.15 to ∼295 nm. A better densification behavior was also observed at higher compacting pressures. 相似文献
18.
《Ceramics International》2017,43(18):16319-16322
The goal of this study is to determine the fracture toughness of 2Y-TZP and 2.5Y-TZP ceramics by single-edge V-notched beam (SEVNB) method and single-edge notched beam (SENB) method. The errors of fracture toughness values tested by SENB are also evaluated. The actual fracture toughness values obtained by SEVNB method are 6.4 ± 0.1 and 5.3 ± 0.1 MPa m1/2 for 2Y-TZP and 2.5Y-TZP, respectively. After SENB method testing, the phase transformability (t-ZrO2 → m-ZrO2) on fractured surface is higher than that of SEVNB method testing. The relationship of fracture toughness values between by SEVNB and by SENB method is established. 相似文献
19.
To investigate the effects of Yb3+ doping on phase structure, thermal conductivity and fracture toughness of bulk Nd2Zr2O7, a series of (Nd1-xYbx)2Zr2O7 (x?=?0, 0.2, 0.4, 0.6, 0.8, 1.0) ceramics were synthesized using a solid-state reaction sintering method at 1600?°C for 10?h. The phase structures were sensitive to the Yb3+ content. With increasing doping concentration, a pyrochlore-fluorite transformation of (Nd1-xYbx)2Zr2O7 ceramics occurred. Meanwhile, the ordering degree of crystal structure decreased. The substitution mechanism of Yb3+ doping was confirmed by analyzing the lattice parameter variation and chemical bond of bulk ceramics. The thermal conductivities of (Nd1-xYbx)2Zr2O7 ceramics decreased first and then increased with the increase of Yb3+ content. The lowest thermal conductivity of approximately 1.2?W?m?1 K?1 at 800?°C was attained at x?=?0.4, around 20% lower than that of pure Nd2Zr2O7. Besides, the fracture toughness reached a maximum value of ~1.59?MPa?m1/2 at x?=?0.8 but decreased with further increasing Yb3+ doping concentration. The mechanism for the change of fracture toughness was discussed to result from the lattice distortion and structure disorder caused by Yb3+ doping. 相似文献
20.
《Ceramics International》2023,49(20):32750-32757
Reaction-bonded SiC is a ceramic with excellent thermal properties, good corrosion resistance and the characteristic of near-net-shape manufacturing. However, the poor fracture toughness of free Si limits the applications of reaction-bonded SiC. In this study, TiC was added to reaction-bonded SiC and reacted with free Si to form Ti3SiC2. The effects of TiC and carbon black on the mechanical properties of reaction-bonded SiC were investigated. The results demonstrated that the in-situ formation of Ti3SiC2 and decrease in the content and size of free Si improved the mechanical properties of reaction-bonded SiC ceramics. The mechanical properties of TiC-added reaction-bonded SiC with 17.5 wt% carbon black were superior to those of TiC-added reaction-bonded SiC with 15 wt% carbon black. Moreover, increasing the TiC content of reaction-bonded SiC with 17.5 wt% carbon black from 0 to 7.5 wt% caused an increase in its bending strength from 183.92 to 424.43 MPa and an increase in fracture toughness from 3.7 to 5.24 MPa m1/2. 相似文献