首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 855 毫秒
1.
Further improving electromechanical properties and overcoming relatively low Curie temperature (Tc) of (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-100xPT) are still two scientific issues. Here, we demonstrate a stable coexistence of monoclinic-tetragonal (MC-T) phases in ZnO-modified PMN-32PT (PMN-32PT:xZnO) due to the diffusion-induced substitution of Zn2+ for Mg2+. The Curie temperature, saturated polarization, remnant polarization, piezoelectric coefficient (Tc, Ps, Pr, d33) are increased from (160 °C, 22.0 μC/cm2, 13.3 μC/cm2, 350 pC/N) for x = 0 to (180 °C, 30.3 μC/cm2, 22.4 μC/cm2, 470 pC/N) for x = 0.06. Moreover, the thermal stability is improved. After annealing at 150 °C, the x = 0.06 sample shows retrained d33 value of 209 pC/N, about 4 times larger than that of x = 0 counterpart. The improved properties are attributed to the substituting increased polar nanoregions and easy domain switching in MC phase.  相似文献   

2.
Transparent conductive NiO thin films with 18 at% Cu dopant were fabricated by ion beam assisted deposition (IBAD). Their structural and optoelectronic properties were compared with undoped NiO films and NiO films doped with 12 at% Cu, and also compared with NiO:Cu (18 at%) films deposited by RF sputtering as reported in our previous work. The results show that the crystallinity of NiO thin films deposited through IBAD technology is much better than that of the films deposited by RF sputtering. Thanks to this reason, the highest carrier mobility above 45 cm2V?1s?1 for NiO:Cu (18 at%) film can be realized here. Meanwhile, the films’ resistivity remains an acceptable value, varying from 2.05 to 0.064 Ω cm with oxygen ion beam current changing from 0.2 to 0.8 A. This feature is imperative for p-type transparent conductive oxides (TCOs) applied in various domains. In addition, with oxygen ion beam current increase, the increase of the Ni3+/Ni2+ ratio leads to more Ni2+ vacancies be introduced into NiO films, which is beneficial to generate holes and improve carrier concentration. In this work, the optimal carrier mobility of NiO film doped with 18 at% Cu is obtained when the oxygen ion beam current is 0.2 A. Its carrier concentration and electrical resistivity are 7.26 ×1016 cm?3 and 2.05 Ω cm, respectively.  相似文献   

3.
(K,Na)NbO3 ferroelectric films were grown on LaNiO3 coated silicon substrates by RF magnetron sputtering. The conductive LaNiO3 films acted as seed layers and induced the highly (001) oriented perovskite (K,Na)NbO3 films. Such films exhibit saturated hysteresis loops and have a remnant polarization (2Pr) of 23 μC/cm2, and coercive field (2Ec) of 139 kV/cm. The films showed a fatigue-free behavior up to 109 switching cycles. A high tunability of 65.7% (@300 kV/cm) was obtained in the films. The leakage current density of the films is about 6.0×10?8 A/cm2 at an electric field of 50 kV/cm.  相似文献   

4.
In this work, in order to optimize the electrical performance of (Na0.85K0.15)0.5Bi0.5TiO3 (NKBT) thin films, 20 nm-thick BaTiO3 (BTO) layer was utilized by deliberately coating in the NKBT film-substrate interface or in the NKBT film, i.e., BTO layers coated in sequence with NBKT layers. The BTO layer, especial coated in the NKBT film, was beneficial for crystallization process and more preferable to form a denser film morphology. The BTO-coated NKBT composite films exhibited much enhancement in electrical properties compared to the films without BTO layer. Accordingly, a high effective piezoelectric coefficient d33* of 75 pm/V and remnant polarization Pr of 22.1 μC/cm2, as well as a low leakage current density of 1.2 × 10?5 A/cm2 were obtained in the 460 nm-thick composite film with BTO layers coated in the NBKT film. It meant that this kind of BTO-coated NKBT composite film could perform as a potential candidate for the lead-free piezoelectric applications. The observed enhancement in the electrical properties with the introduction of BTO layer could be mainly explained by the weakened influence of domain pinning in the film-electrode interface and grain boundaries due to the decreased strain in the film-electrode interface and better crystallinity in the highly (110)-oriented NKBT films, thereby enhancing motion of domain-walls.  相似文献   

5.
A facile hydrothermal route via high temperature mixing method was used to synthesize (K, Na) (Nb, Ta)O3 lead-free piezoelectric ceramic powders. The influence of Ta doping and K+/(K+ + Na+) molar ratios in the starting solution on the resultant powders were investigated by X-ray diffraction, scanning electron microscope, transmission electron microscopy, and selected area electron diffraction. The Ta element was successfully doped into the alkaline niobate structure to form crystalline (K, Na) (Nb, Ta)O3 lead-free piezoelectric ceramics powder. The microstructure, piezoelectric, ferroelectric, and dielectric properties of the sintered (K, Na) (Nb, Ta)O3 ceramics from the obtained powders were investigated. The piezoelectric coefficient (d33), electromechanical coupling coefficient (kp), dielectric constant (?r), and remnant polarization (Pr) of the sample sintered at 1180 °C show optimal values of 210 pC/N, 34.0%, 2302, and 19.01 μC/cm2, respectively.  相似文献   

6.
The Nextel? 440 fiber reinforced nitride matrix (N440/Nitride) composites were fabricated by precursor infiltration and pyrolysis (PIP) route. The results demonstrated that the original N440 fiber had a phase composition of amorphous SiO2 and γ-Al2O3. Its single filament tensile strength was 3.03 GPa (at room temperature), while it dropped to 72.6% and 35.1% at 1200 °C and 1400 °C, respectively. The phase content of N440/Ntride composites was mainly γ-Al2O3 and amorphous BN, as well as mullite phase (formed at > 1100 °C). The composites owned a flexural strength up to 76.0 MPa at room temperature. The stair-stepping decrease in the load-displacement curve and fiber pull-outs in the fracture surface indicated a good fiber/matrix interface and toughness. By heating at 1400 °C, the composites still possessed 67.4% of original bending strength. It was found that the high temperatures caused strong fiber-matrix bonding and severe fiber degradation. The specific heat, CTE and thermal conductivity of the composites were 0.325–0.586 J g?1 K?1, (3.2–4.0) × 10?6 K?1 and 0.78–3.47 W m?1 K?1, respectively. The composites possessed a dielectric constant of 4.25–4.35 and loss tangent of 0.004–0.01 at 8–12 GHz. The good overall performances enabled the N440/Nitride composites advanced high-temperature wave-transparent applications.  相似文献   

7.
Energy harvesting, which can translate the wasted vibration energy into electric energy, is now a hot topic in the field of new energy, and the key point is to design high power piezoelectric ceramic according with the requirements of low-frequency vibration energy harvesting. In this study, high quality Co-modified 0.2Pb(Zn1/3Nb2/3)O3–0·8Pb(Zr0·50Ti0·50)O3 (PZN–PZT+Co) ceramics have been prepared by the two-stage method, and the energy harvesting characteristics were investigated. The results showed that the hierarchical nanodomain structure boosts the strong piezoelectric activity, leading to the high energy harvesting performance. The PZN–PZT+Co ceramic sintered at 1000 °C exhibits an excellent d33 × g33 value of 14080 × 10?15 m2/N, which are much larger than that of commercial PZT-based ceramics. In the mode of the cantilever-type energy harvester, the output voltage and energy density of 33 V, 4.4 μW/mm3 were obtained at a low resonance frequency of 85 Hz and acceleration of 10 m/s2, showing potential application in piezoelectric energy harvester.  相似文献   

8.
The relaxor ferroelectric Pb0.9La0.1(Zr0.52Ti0.48)O3 (PLZT) thin films were deposited using pulsed laser deposition, and their microstructures, break-down field strengths and energy storage performances were investigated as a function of the buffer layer and electrode. A large recoverable energy-storage density (Ureco) of 23.2 J/cm3 and high energy-storage efficiency (η) of 91.6% obtained in the epitaxial PLZT film grown on SrRuO3/SrTiO3/Si are much higher than those in the textured PLZT film (Ureco = 21.9 J/cm3, η = 87.8%) on SrRuO3/Ca2Nb3O10-nanosheet/Si and the polycrystalline PLZT film (Ureco = 17.6 J/cm3, η = 82.6%) on Pt/Ti/SiO2/Si, under the same condition of 1500 kV/cm and 1 kHz, due to the slim polarization loop and significant antiferroelectric-like behavior. Owing to the high break-down strength (BDS) of 2500 kV/cm, a giant Ureco value of 40.2 J/cm3 was obtained for the epitaxial PLZT film, in which Ureco values of 28.4 J/cm3 (at BDS of 2000 kV/cm) and 20.2 J/cm3 (at BDS of 1700 kV/cm), respectively, were obtained in the textured and polycrystalline PLZT films. The excellent fatigue-free properties and high thermal stability were also observed in these films.  相似文献   

9.
In this work ZnxCd1?xTiO3 (x=0.25, 0.5, 0.75) nanoparticles were synthesized using solid state reaction method. Detailed investigation of electrical properties and room temperature methanol sensing characteristics of synthesized nanoparticles was carried out. X-ray diffraction (XRD) and Scanning Electron Microcopy (SEM) were used to determine the crystal structure and morphology of the prepared material. The transition from positive temperature coefficient of resistivity (PTCR) to negative temperature coefficient of resistivity (NTCR) was observed in Zn0.75Cd0.25TiO3, Zn0.50Cd0.50TiO3 and Zn0.25Cd0.75TiO3 nanoparticles at 268 K, 248 K and 278 K respectively. Prototype sensors of prepared ZnxCd1?xTiO3 (x=0.25, 0.5, 0.75) nanoparticles were tested at 10 ppm, 20 ppm, 30 ppm and 40 ppm of methanol at room temperature. The Zn0.75Cd0.25TiO3 and Zn0.25Cd0.75TiO3 nanoparticles sensors exhibited fast response and recovery times and a linear response with increase in methanol concentration. The Zn0.5Cd0.5TiO3 nanoparticles sensors exhibited nonlinear response and slow response and recovery times. Response of sensors based on all compositions was stable over period of 30 days.  相似文献   

10.
DIPAS (di-isopropylamino silane, H3Si[N(C3H7)2]) and O2 plasma were employed, using plasma-enhanced atomic layer deposition (PEALD), to deposit silicon oxide to function as the gate dielectric at low temperature, i.e., below 200 °C. The superior amorphous SiO2 thin films were deposited through the self-limiting reactions of atomic layer deposition with a deposition rate of 0.135 nm/cycle between 125 and 200 °C. PEALD-based SiO2 thin layer films were applied to amorphous oxide thin film transistors constructed from amorphous In-Ga-Zn-O (IGZO) oxide layers, which functioned as channel layers in the bottom-gated thin film transistor (TFT) structure, with the aim of fabricating transparent electronics. The SiO2 gate dielectric exhibited the highest TFT performance through the fabrication of heavily doped n-type Si substrates, with a saturation mobility of 16.42 cm2/V·s, threshold voltage of 2.95 V and large on/off current ratio of 3.69 × 108. Ultimately, the highly doped Si was combined with the ALD-based SiO2 gate dielectric layers, leading to a saturation mobility of 16.42 cm2/V·s, threshold voltage of 2.95 V, S-slope of 0.1944, and on/off current ratio of 3.69 × 108. Semi-transparent and transparent TFTs were fabricated and provided saturation mobilities of 22.18 and 24.29 cm2/V·s, threshold voltages of 4.18 and 2.17 V, S-slopes of 0.1944 and 0.1945, and on/off current ratios of 9.63 × 108 and 1.03 × 107, respectively.  相似文献   

11.
《Ceramics International》2016,42(14):15166-15170
Zinc cadmium oxide (Zn1−xCdxO) films were deposited on quartz substrates by direct current (DC) and radio frequency (RF) reactive magnetron co-sputtering and the influence of post-annealing atmosphere on their microstructure, optical and electrical properties were investigated by X-ray diffraction (XRD), optical absorbance, photoluminescence (PL) and Hall measurements. Results indicate that the band gap (Eg) of all Zn1−xCdxO films annealed in different atmospheres are smaller than that of the undoped ZnO, the observed shifts in Eg being 0.43, 0.37 and 0.32 eV for the Zn1−xCdxO films annealed in argon, oxygen and vacuum, respectively. Hall measurement results indicate that all Zn1−xCdxO films annealed in different atmospheres show the n-type conduction, but the Zn1−xCdxO film annealed in vacuum has low resistivity and high concentration, which has room-temperature resistivity of 1.59 Ω cm and carrier concentration of 2.07×1017 cm−3. Compared with Zn1−xCdxO films annealed in oxygen and argon, Zn1−xCdxO film annealed in vacuum has the best crystal quality, luminescence and electrical properties. The influencing mechanism of the post-annealing atmosphere on the electrical and optical properties of the Zn1−xCdxO film is discussed.  相似文献   

12.
Optimization of electrodes for charge storage with appropriate processing conditions places significant challenges in the developments for high performance charge storage devices. In this article, metal cobaltite spinels of formula MCo2O4 (where M = Mn, Zn, Fe, Ni and Co) are synthesized by oxalate decomposition method followed by calcination at three typical temperatures, viz. 350, 550, and 750 °C and examined their performance variation when used as anodes in lithium ion batteries. Phase and structure of the materials are studied by powder x-ray diffraction (XRD) technique. Single phase MnCo2O4,ZnCo2O4 and Co3O4 are obtained for all different temperatures 350 °C, 550 °C and 750 °C; whereas FeCo2O4 and NiCo2O4 contained their constituent binary phases even after repeated calcination. Morphologies of the materials are studied via scanning electron microscopy (SEM): needle-shaped particles of MnCo2O4 and ZnCo2O4, submicron sized particles of FeCo2O4 and agglomerated submicron particle of NiCo2O4 are observed. Galvanostatic cycling has been conducted in the voltage range 0.005–3.0 V vs. Li at a current density of 60 mA g?1 up to 50 cycles to study their Li storage capabilities. Highest observed charge capacities are: MnCo2O4 – 365 mA h g?1 (750 °C); ZnCo2O4 – 516 mA h g?1 (550 °C); FeCo2O4 – 480 mA h g?1 (550 °C); NiCo2O4 – 384 mA h g?1 (750 °C); and Co3O4 – 675 mA h g?1 (350 °C). The Co3O4 showed the highest reversible capacity of 675 mA h g?1; the NiO present in NiCo2O4 acts as a buffer layer that results in improved cycling stability; the ZnCo2O4 with long needle-like shows good cycling stability.  相似文献   

13.
Effects of oxidation cross-linking and sintering temperature on the microstructure evolution, thermal conductivity and electrical resistivity of continuous freestanding polymer-derived SiC films were investigated. The as-received films consisting of β-SiC nanocrystals embedded in amorphous SiOxCy and free carbon nanosheets were fabricated via melt spinning of polycarbosilane (PCS) precursors and cured for 3 h/10 h followed by pyrolysis from 900 °C to 1200 °C. Results reveal that nanoscale structure (β-SiC/SiOxCy/Cfree) provides an ingenious strategy for constructing highly thermal conductive, highly insulating and highly flexible complexes. In particular, the 3 h-cured films sintered at 1200 °C with satisfying thermal conductivity (46.8 W m?1 K?1) and electrical resistivity (2.1 × 108 Ω m) are suitable for the realization of high-performance substrates. A remarkable synergistic effect (lattice vibration of β-SiC nanocrystals and close-packed SiOxCy, free-electron heat conduction of β-SiC and free carbon, and supporting role of oxygen vacancy) contributing to thermal conductivity improvement is proposed based on the analysis of microstructure, intrinsic properties and simulations. Eventually, the SiC films without additional dielectric layers are directly silk-screen printed with high-temperature silver paste and used as heat dissipation substrates for high-power LED devices via chip-on-board (COB) package. The final devices can emit bright light with low-junction temperature (52.6 °C) and good flexibility owing to the mono-layer SiC substrate with low thermal resistance and desirable mechanical properties. This work offers an effective approach to design and fabricate flexible heat dissipation ceramic substrates for thermal management in advanced electronic packaging fields.  相似文献   

14.
Bi2Zn2/3Nb4/3O7 thin films were deposited at room temperature on Pt/Ti/SiO2/Si(1 0 0) and polymer-based copper clad laminate (CCL) substrates by pulsed laser deposition. Bi2Zn2/3Nb4/3O7 thin films were deposited in situ with no intentional heating under an oxygen pressure of 4 Pa and then post-annealed at 150 °C for 20 min. It was found that the films are still amorphous in nature, which was confirmed by the XRD analysis. It has been shown that the surface roughness of the substrates has a significant influence on the electrical properties of the dielectric films, especially on the leakage current. Bi2Zn2/3Nb4/3O7 thin films deposited on Pt/Ti/SiO2/Si(1 0 0) substrates exhibit superior dielectric characteristics. The dielectric constant and loss tangent are 59.8 and 0.008 at 10 kHz, respectively. Leakage current density is 2.5 × 10?7 A/cm2 at an applied electric field of 400 kV/cm. Bi2Zn2/3Nb4/3O7 thin films deposited on CCL substrates exhibit the dielectric constant of 60 and loss tangent of 0.018, respectively. Leakage current density is less than 1 × 10?6 A/cm2 at 200 kV/cm.  相似文献   

15.
Perovskite Na0.5(Bi1?xNdx)0.5TiO3 (x = 0, 0.01, 0.03, 0.05; xNd: NBT) ferroelectric films were synthesized on indium tin oxide (ITO)/glass substrates via chemical solution deposition. Structural characterization shows the similar phase-pure perovskite structures in all the films and gradually decreased grain sizes with Nd3+ doping amount increasing. For all the films, the leakage behaviors are dominant by the Ohmic conduction in low electric field region and interface-limited Fowler-Nordheim tunneling mechanism in high electric field region. Additionally, the space-charge-limited conduction is involved in 0.03Nd: NBT sample. Compared with the sample of x = 0, the resistivity can be improved through Nd3+-substitution in NBT. Enhanced ferroelectricity can be obtained from the dynamic polarization-electric field test, and the reversible domains switching in film can be confirmed by static dielectric constant-electric field measurement. Especially, the 0.03Nd: NBT possesses optimal electrical performances with a large remanent polarization (Pr = 26.7 μC/cm2) and a high dielectric tunability (19.6% at 100 kHz).  相似文献   

16.
The ceramic thin films of 47(Ba0.7Ca0.3)TiO3–0.53Ba(Zr0.2Ti0.8)O3 (BCZT) + x (x = 0.2, 0.3, 0.4 and 0.5) mol% Tb were grown on Pt(111)/Si substrates with various annealing temperature by pulsed laser deposition. The XRD spectra confirm that Tb element can enhance the (l10) and (111) orientations in ceramic films. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) images show that Tb-doping can increase particle size effectively. The surface of Tb-doped film annealed at 800 ℃ is uniform and crack-free, and the average particle size and mean square roughness (RMS) are about 280 nm and 4.4 nm, respectively. Comparing with pure BCZT, the residual polarization (Pr) of 0.4 mol% Tb-doped film annealed at 800 ℃ increase from 3.6 to 9.8 μC/cm2. Moreover, the leakage current density value of Tb doped films are one order of magnitude (5.33 × 10?9?1.97 × 10?8 A/cm2 under 100 kV/cm) smaller than those of pure BCZT films (1.02 × 10?7 A/cm2).  相似文献   

17.
Lead-free Bi0.5Na0.5TiO3 (BNT) piezoelectric thin films were deposited on Pt/TiOx/SiO2/Si substrates by Sol-Gel method. A dense and well crystallized thin film with a perovskite phase was obtained by annealing the film at 700 °C in a rapid thermal processing system. The relative dielectric constant and loss tangent at 12 kHz, of BNT thin film with 350 nm thickness, were 425 and 0.07, respectively. Ferroelectric hysteresis measurements indicated a remnant polarization value of 9 μC/cm2 and a coercive field of 90 kV/cm. Piezoelectric measurements at the macroscopic level were also performed: a piezoelectric coefficient (d33effmax) of 47 pm/V at E = 190 kV/cm was obtained. The piezoresponse force microscopy data confirmed that BNT thin films present ferroelectric and piezoelectric behavior at the nanoscale level.  相似文献   

18.
BaAl2?2x(ZnSi)xSi2O8 (x = 0.2–1.0) ceramics were prepared using the conventional solid-state reaction method. The sintering behaviour, phase composition and microwave dielectric properties of the prepared compositions were then investigated. All compositions showed a single phase except for x = 0.8. By substituting (Zn0.5Si0.5)3+ for Al3+ ions, the optimal sintering temperatures of the compositions decreased from 1475 °C (x = 0) to 1000 °C (x = 0.8), which then slightly increased to 1100 °C (x = 1.0). Moreover, the phase stability of BaAl2Si2O8 was improved. A novel BaZnSi3O8 microwave dielectric ceramic was obtained at the sintering temperature of 1100 °C. This ceramic possesses good microwave dielectric properties with εr = 6.60, Q × f = 52401 GHz (at 15.4 GHz) and τf = ?24.5 ppm/°C.  相似文献   

19.
《Ceramics International》2017,43(2):2279-2287
We have investigated the characteristics of p-type Li-doped Cu2O (LCO) films grown by radio frequency magnetron sputtering to use as p-n heterojunction for flexible and semi-transparent piezoelectric nanogenerators (PENGs). Electrical, optical, morphological properties of the LCO films were examined as a function of Ar/O2 flow ratio as well as work function. The LCO films grown at Ar/O2 ratio of 20/4 sccm film showed a p-type behavior with resistivity of 2.12 Ω-cm, mobility of 0.364 cm2/V-s, and carrier concentration of 8.07×1019 cm-3. To overcome the piezoelectric potential screening effect of conventional ZnO-based PENGs, the p-type LCO layer was employed. Due to the enhanced piezoelectric potential coupled with the reduced total capacitance, the PENG with a p-LCO/n-ZnO heterojunction demonstrates the much higher output power up to ~52 μW than PENG only with ZnO layer (7 μW). The improved output power of PENGs indicates that sputtering of the p-type LCO layer on the n-type ZnO is the effective method to overcome the limit of the ZnO-based PENGs.  相似文献   

20.
SrTiO3-based films doped with different Al-precursors were prepared by sol-gel methods and the dielectric strengths and leakage currents of the materials were investigated. The best performance was found in SrTiO3 films doped with Al2O3 nanoparticles (nano-Al2O3). When 5 mol% of nano-Al2O3 was added to SrTiO3 films with Al electrodes, the dielectric strength was enhanced to 506.9 MV/m compared with a value of 233.5 MV/m for SrTiO3 films. The energy density of the 5 mol% nano-Al2O3 doped SrTiO3 films was 19.3 J/cm3, which was also far higher than that of the SrTiO3 films (3.2 J/cm3). These results were attributed to interfacial anodic oxidation reactions, which were experimentally confirmed by cross-sectional transmission electron microscope studies and theoretically modelled based on Faraday's laws. The films with added nano-Al2O3 featured many conducting paths at the interfaces between the host phase and the guest nano-Al2O3, which promoted ion transport and contributed to the strong anodic oxidation reaction capability of the 5 mol% nano-Al2O3 doped SrTiO3 films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号