首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The low fracture toughness of Al2O3-based ceramics limited their practical application in cutting tools. In this work, graphene was chosen to reinforce Al2O3-WC-TiC composite ceramic tool materials by hot pressing. Microstructure, mechanical properties and toughening mechanisms of the composite ceramic tool materials were investigated. The results indicated that the more refined and denser composite microstructures were obtained with the introduction of graphene. The optimal flexural strength, Vickers hardness, indentation fracture toughness were 646.31?±?20.78?MPa, 24.64?±?0.42?GPa, 9.42?±?0.40?MPa?m1/2, respectively, at 0.5?vol% of graphene content, which were significantly improved compared to ceramic tool material without graphene. The main toughening mechanisms originated from weak interfaces induced by graphene, and rugged fractured surface, grain refinement, graphene pull-out, crack deflection, crack bridging, micro-crack and surface peeling were responsible for the increase of fracture toughness values.  相似文献   

2.
A kind of B4C/SiC composite ceramic toughened by graphene platelets and Al was fabricated by spark plasma sintering. The effects of graphene platelets and Al on densification, microstructure and mechanical properties were studied. The sintering temperature was decreased about 125–300?°C with the addition of 3–10?wt% Al. Al can also improve fracture toughness but decrease hardness. The B4C/SiC composite ceramic with 3?wt%Al and 1.5?wt% graphene platelets sintered at 1825?°C for 5?min had the optimal performances. It was fully densified, and the Vickers hardness and fracture toughness were 30.09?±?0.39?GPa and 5.88?±?0.49?MPa?m1/2, respectively. The fracture toughness was 25.6% higher than that of the composite without graphene platelets. The toughening mechanism of graphene platelets was also studied. Pulling-out of graphene platelets, crack deflection, bridging and branching contributed to the toughness enhancement of the B4C-based ceramic.  相似文献   

3.
Structure and mechanical characteristics of dense ceramic composites synthesised by reactive hot pressing of TiC–B4C powder mixtures at 1800–1950°C under 30?MPa were investigated by X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM and EDX). The results show that during hot pressing solid-phase chemical reaction 2TiC?+?B4C?=?2TiB2?+?3C has occurred with final products like TiB2–TiC–C, TiB2–C or TiB2–B4C–C hetero-modulus composite formation with around one micrometer size carbon precipitates. The fracture toughness depends on the amount of graphite precipitation and has a distinct maximum K1C?=?10?MPa?m1/2 at nearly 7?vol.-% of carbon precipitate. The fracture toughness behaviour is explained by the developed model of crack propagation. Within the model, it is shown that pores (voids) and low-modulus carbon inclusions blunt the cracks and can increase ceramic toughness in some cases.  相似文献   

4.
We prepared B4C/Al laminated composites via ice-templating and gas-aided pressure infiltration and investigated the effects of TiO2 addition on the microstructures and mechanical properties of the composites. The incorporation of TiO2 led to the formation of TiB2 after sintering, reduced the formation of harmful phases and increased the strength of ceramic architectures. However, its excessive addition resulted in the cracking of ceramic layers and the formation of metal strips after Al infiltration. The bending strength, fracture toughness and work of fracture of the composites first increased and then decreased with increasing initial TiO2 content, reaching maxima of 420?±?20?MPa, 44?±?2?MPa?m1/2 and 5002?±?175?J?m?2, respectively. The specific strength and toughness are comparable to those of titanium alloys. Furthermore, fracture modes and toughening mechanisms were thoroughly addressed by analyzing crack propagation paths and fracture surface morphologies. Crack deflection and metal bridging are two primary extrinsic toughening mechanisms.  相似文献   

5.
《Ceramics International》2023,49(5):7404-7413
TiB2 composite ceramics containing different amounts of Ti and TiC were fabricated via spark plasma sintering (SPS), and effects of their addition contents on the microstructure and mechanical properties were discussed. The newly formed phases of TiB with a cubic lattice structure in the composite ceramics were observed. At a relatively low temperature of 1510 °C, pressure of 50 MPa, and holding time of 5 min, the TiB2 composite ceramic with 30 wt% TiC and 10 wt% Ti additions acquired an excellent strength of 727 MPa and a high toughness of 7.62 MPa m1/2. The improvement in strength and toughness was attributed to the mixed fracture mode, second phase strengthening, and increased energy consumption for crack propagation caused by the newly formed phases and fine TiC particles. In addition, the significant effects of the Ti and TiC addition contents on the densification temperature and mechanical properties of the composite ceramics were determined using analysis of variance (ANOVA).  相似文献   

6.
Toughening of boron carbide (B4C) without hardness degradation, was achieved by hierarchical structures consisting of B4C micro-grains, titanium diboride (TiB2) grains, and graphitic phases along B4C grain boundaries. Such hierarchical structures were uniquely achieved by co-sintering of B4C micro-powder and carbon-rich B4C nano-powder, in situ formation of TiB2, and by utilizing the short sintering time of field-assisted sintering technology. Toughening mechanisms observed after micro-indentation include crack deflection and delamination of graphite platelets, micro-crack toughening and crack deflection/bridging by TiB2 grains. Fracture toughness enhancement was achieved while maintaining hardness: 4.65 ± 0.49 MPa m1/2 fracture toughness and 31.88 ± 1.85 GPa hardness for a micro/nano B4C-TiB2 composite (15 vol% TiB2 and 15 vol% B4C nano-powders) vs. 2.98 ± 0.24 MPa m1/2 and 32.46 ± 1.67 GPa for a reference micro B4C sample. In future, macro-scale mechanical testing will be conducted to further evaluate how these micro-scale hierarchical structures can be translated to macro-scale mechanical properties.  相似文献   

7.
Si3N4 composites with 3 and 5?wt% of graphene nanoplatelet (GNP) additions were prepared by spark plasma sintering. We used both commercially available GNPs and thinner few-layer graphene nanoplatelets (FL-GNPs) prepared by further exfoliation through ball milling with melamine addition. We found that by employing thinner FL-GNPs as filler material a 100% increase in the fracture toughness of Si3N4/3?wt% FL-GNP composites (10.5?±?0.2?MPa?m1/2) can be achieved as compared to the monolithic Si3N4 samples (5.1?±?0.3?MPa?m1/2), and 60% increase compared to conventional Si3N4/3?wt% GNP composites (6.6?±?0.4?MPa?m1/2). For 5?wt% filler content the increase of the fracture toughness was near 50% for both GNP and FL-GNP fillers. The hardness of the composites decreased with increasing GNP content. However, composites reinforced with 5?wt% of FL-GNPs displayed 30% higher Vickers hardness (12.8?±?0.2?GPa) than their counterparts comprising conventional GNP fillers (9.8?±?0.2?GPa). We attribute the enhanced mechanical properties obtained with thinner FL-GNPs to their higher aspect ratio leading to a more homogeneous dispersion, higher interface area, as well as smaller pores in the ceramic matrix.  相似文献   

8.
《Ceramics International》2022,48(9):11981-11987
Previous research have reported that B4C–TiB2 composites could be prepared by the reactive sintering of TiC–B powder mixtures. However, due to spontaneous oxidation of raw powders, using TiC–B powder mixtures with a B/TiC molar ratio of 6: 1 introduced an intermediate phase of C during the sintering process, which deteriorated the hardness of the composites. In this report, the effects of B excess on the phase composition, microstructure, and mechanical properties of B4C–TiB2 composites fabricated by reactive hot pressing TiC–B powder mixtures were investigated. XRD and Raman spectra confirmed that lattice expansion occurred in B-rich boron carbide and BxC–TiB2 (x > 4) composites were obtained. The increasing B content improved the hardness and fracture toughness but decreased the flexural strength of BxC–TiB2 (x > 4) composites. When the molar ratio of B/TiC increased from 6.6:1 to 7.8:1, the Vickers hardness and the fracture toughness of the composites were enhanced from 26.7 GPa and 4.53 MPa m1/2 to 30.4 GPa and 5.78 MPa m1/2, respectively. The improved hardness was attributed to the microstructural improvement, while the toughening mechanism was crack deflection, crack bridging and crack branching.  相似文献   

9.
The interfacial microstructure and mechanical properties of B4C-SiC-TiB2 composite joints diffusion bonded with Ti foil interlayer were investigated. The joints were diffusion bonded in the temperature range of 800–1200?°C with 50?MPa by spark plasma sintering. The results revealed that robust joint could be successfully obtained due to the interface reaction. B4C reacted with Ti to form nanocrystalline TiB2 and TiC at the interface at 800–1000?°C. Both the reactions between SiC and Ti and between TiB2 and Ti were not observed during joining. A full ceramic joint consisted of micron- and submicron-sized TiB2 and TiC, accompanied with the formation of micro-crack, was achieved for the joint bonded at 1200?°C. Joint strength was evaluated and the maximum shear strength (145?±?14.1?MPa) was obtained for the joint bonded at 900?°C. Vickers hardness of interlayer increased with increasing the joining temperature.  相似文献   

10.
B4C-TiB2 composites were contaminated with WC to study the effect on densification, microstructure and properties. WC was introduced through a mild or a high energy milling with WC-6?wt%Co spheres or directly as sintering aid to 50?vol% B4C / 50?vol%TiB2 mixtures. High energy milling was very effective in improving the densification thanks to the synergistic action of WC impurities, acting as sintering aid, and size reduction of the starting TiB2-B4C powders. As a result, the sintering temperature necessary for full densification decreased to 1860?°C and both strength and hardness benefited from the microstructure refinement, 860?±?40 MPa and 28.5?±?1.4?GPa respectively. High energy milling was then adopted for producing 75?vol% B4C/25?vol% TiB2 and 25?vol% B4C/ 75vol%TiB2 mixtures. The B4C-rich composition showed the highest hardness, 32.2?±?1.8?GPa, whilst the TiB2-rich composition showed the highest value of toughness, 5.1?±?0.1?MPa?m0.5.  相似文献   

11.
TiB2-Metal composite coatings with excellent oxidation resistance become ideal candidates using at high temperature ranging from 600 to 1000?°C. In order to maintain both the superior mechanical properties and oxidation resistance in severe working conditions, the nanostructured NiCrCoAlY-TiB2 coating was fabricated by the activated combustion high velocity air-fuel spraying (AC-HVAF) with the composite powders prepared by ball milling and plasma spheroidization. X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to observe the phase constituents and microstructure. It was found that the coating with nanostructured TiB2 particles uniformly distributed in the NiCrCoAlY matrix has the same structure as the composite powders. The coating shows excellent mechanical properties, such as high microhardness (991.43 HV0.3), good fracture toughness (4.12?MPa?m?1/2) and large bonding strength (75.43?MPa), and excellent oxidation resistance with low weight gain (1.56?×?10?6 mg2 cm?4 s?1). The cyclic oxidation behavior is in accordance with the parabolic law.  相似文献   

12.
Based on thermodynamic analysis, highly dense (TiB2 + TiC)/Ti3SiC2 composite ceramics with different TiB2 volume contents were in situ fabricated in situ by hot-pressing at 1500 °C. Laminar Ti3SiC2 grains, columnar TiB2 grains and equiaxed TiC grains were clearly identified from microstructural observation; grain boundaries were clean. The increase of TiB2 volume content significantly restrains the grain growth of the Ti3SiC2 matrix. As the content of TiB2 increases from 5 vol.% to 20 vol.%, the bending strength and fracture toughness of the composites both increase and then decrease, whereas the Vickers hardness increases linearly from 6.13 GPa to 11.5 GPa. The composite with 10 vol.% TiB2 shows the optimized microstructure and optimal mechanical properties: 700 MPa for bending strength; 9.55 MPa m1/2 for fracture toughness. These are attributed to the synergistic action of strengthening and toughening mechanisms such as particulate reinforcement, crack deflection, grain's pull-out and fine-grain toughening, caused by the columnar TiB2 grains and equiaxed TiC grains.  相似文献   

13.
《Ceramics International》2020,46(12):20068-20080
In this study, Al2O3–TiC composites synergistically reinforced with multi-walled carbon nanotubes (MWCNTs) and graphene nanoplates (GNPs) were prepared via spark plasma sintering (SPS). The effects of the MWCNT and GNP contents on the phase composition, mechanical properties, fracture mode, and toughening mechanism of the composites were systematically investigated. The experimental results indicated that the composite grains became more refined with the addition of MWCNTs and GNPs. The nanocomposites presented high compactness and excellent mechanical properties. The composite with 0.8 wt% MWCNTs and 0.2 wt% GNPs presented the best properties of all analysed specimens, and its relative density, hardness, and fracture toughness were 97.3%, 18.38 ± 0.6 GPa, and 9.40 ± 1.6 MPa m1/2, respectively. The crack deflection, bridging, branching, and drawing effects of MWCNTs and GNPs were the main toughening mechanisms of Al2O3–TiC composites synergistically reinforced with MWCNTs and GNPs.  相似文献   

14.
Titanium carbide ceramics with different contents of boron or B4C were pressureless sintered at temperatures from 2100 °C to 2300 °C. Due to the removal of oxide impurities, the onset temperature for TiC grain growth was lowered to 2100 °C and near fully dense (>98%) TiC ceramics were obtained at 2200 °C. TiB2 platelets and graphite flakes were formed during sintering process. They retard TiC grains from fast growth and reduced the entrapped pores in TiC grains. Therefore, TiC doped with boron or B4C could achieve higher relative density (>99.5%) than pure TiC (96.67%) at 2300 °C. Mechanical properties including Vickers’ hardness, fracture toughness and flexural strength were investigated. Highest fracture toughness (4.79 ± 0.50 MPa m1/2) and flexural strength (552.6 ± 23.1 MPa) have been obtained when TiC mixed with B4C by the mass ratio of 100:5.11. The main toughening mechanisms include crack deflection and pull-out of TiB2 platelets.  相似文献   

15.
Nacre-inspired laminated composites have been proven to possess a unique combination of strength and toughness. In this study, we fabricated nacre-mimetic Cu/TiC composites via unidirectional freezing of aqueous TiC slurries containing different amounts of NiO additives, followed by ice sublimation, carbothermal reduction of NiO to Ni during sintering and then gas-pressure infiltration of the Cu melt. The introduction of Ni greatly facilitated the densification of ceramic lamellae and enhanced the interfacial bonding between Cu and TiC. The resultant composites displayed outstanding damage tolerance and anisotropic electrical conductivities. Specifically, for an ~31?vol% TiC–Cu composite containing 24?wt% Ni in the ceramic lamellae (based on the TiC content), a fracture toughness (KJc) of 72.5?±?1.0?MPa·m1/2, work of fracture of 53.4?±?3.5?kJ/m2, bending strength of 725?±?11?MPa and longitudinal electrical conductivity of 22.7?MS/m (~60% of the Cu matrix) were achieved, which were approx. 81%, 536%, 122% and 97% higher than those of the Ni-free composite, respectively. Noticeable toughening was demonstrated to be a consequence of multiple cracking, plastic deformation and uncracked-ligament bridging of the metal layers, as well as crack deflection and blunting. On the other hand, significant strengthening resulted from tailoring the microstructures in the ceramic layers and at the Cu/TiC interface as a result of Ni doping. We believe that the facile strategy adopted herein provides an effective way to solve the problems of wetting and bonding related to metal infiltration and can be readily extended to the preparation of other nacre-inspired metal?ceramic composites.  相似文献   

16.
ABSTRACT

The graphene/ZrO2 composites were fabricated by impregnating graphene dispersion into the ZrO2 ceramic matrix and sintered by microwave, and the microstructure and mechanical properties were investigated. The results showed that the graphene was well dispersed in the ceramic matrix and refined the grain size. The fracture toughness reached 8.62?MPa?m1/2, confirmed by single-edge notched beam, which was 42% higher than that of the pure ZrO2. Also, the toughening mechanisms were investigated by micro-hardness testing and showed that a combination of crack deflection, micro-crack and crack bridging increased the fracture toughness.  相似文献   

17.
B4C–TiB2–SiC composites toughened by composite structural toughening phases, which are the units of (TiB2–SiC) composite, were fabricated through reactive hot pressing with B4C, TiC, and Si as raw materials. The units of (TiB2–SiC) composite with the size of 10‐20 μm are composed of interlocking TiB2 and SiC with the size of 1‐5 μm. The addition of TiC and Si can effectively promote the sintering of B4C ceramics. The relative densities of all the B4C composites with different contents of TiB2 and SiC are close to completely dense (98.9%‐99.4%), thereby resulting in superior hardness (33.1‐36.2 GPa). With the increase in the content of TiB2 and SiC, the already improved fracture toughness of the B4C composite continuously increases (5.3‐6.5 MPa·m1/2), but the flexure strength initially increases and then decreases. When cracks cross the units of the (TiB2–SiC) composite, the cracks deflect along the interior boundary of TiB2 and SiC inside the units. As the crack growth path is lengthened, the crack propagation direction is changed, thereby consuming more crack extension energy. The cumulative contributions improve the fracture toughness of the B4C composite. Therefore, the composite structural toughening units of the (TiB2–SiC) composite play an important role in reinforcing the fracture toughness of the composites.  相似文献   

18.
High electrical resistance and low fracture toughness of B4C ceramics are 2 of the primary challenges for further machining of B4C ceramics. This report illustrates that these 2 challenges can be overcome simultaneously using core‐shell B4C‐TiB2&TiC powder composites, which were prepared by molten‐salt method using B4C (10 ± 0.6 μm) and Ti powders as raw materials without co‐ball milling. Finally, the near completely dense (98%) B4C‐TiB2 interlayer ceramic composites were successfully fabricated by subsequent pulsed electric current sintering (PECS). The uniform conductive coating on the surface of B4C particles improved the mass transport by electro‐migration in PECS and thus enhanced the sinterability of the composites at a comparatively low temperature of 1700°C. The mechanical, electrical and thermal properties of the ceramic composites were investigated. The interconnected conductive TiB2 phase at the grain boundary of B4C significantly improved the properties of B4C‐TiB2 ceramic composites: in the case of B4C‐29.8 vol% TiB2 composite, the fracture toughness of 4.38 MPa·m1/2, the electrical conductivity of 4.06 × 105 S/m, and a high thermal conductivity of 33 W/mK were achieved.  相似文献   

19.
In this work, we systematically studied the effects of powder characteristics (B4C, TiC and Si powders) on the existential form of toughening phases (SiC and TiB2) as well as the overall microstructure and properties of B4C–TiB2–SiC composites fabricated by reactive hot pressing. The particle size of the TiC powder plays a largely determining role in the development of novel toughening phases, the TiB2–SiC composite structure, that are formed in the B4C matrix, while the Si particle size affects the agglomerate level of the SiC phase. The TiB2–SiC composite structure and SiC agglomerates enhance the fracture toughness, but decrease the flexural strength. Both the microstructure and mechanical properties of B4C–TiB2–SiC composites can be effectively tuned by regulating the combinations of the particle sizes of the starting powders. The B4C–TiB2–SiC composites demonstrate flexural strength, fracture toughness and Vickers hardness in the respective range of 567–632 MPa, 5.11–6.38 MPa m1/2, and 34.8–35.6 GPa.  相似文献   

20.
《Ceramics International》2022,48(4):5119-5129
The spark plasma sintering (SPS) technique was found to effectively improve the mechanical properties of TiB2–SiC ceramic by forming a unique interlocking structure. This study investigated the phase transition process of the hexagonal micro-platelets TiB2 powders with self-assembled structure during the molten-salt-mediated carbothermal reduction and its effect on promoting the mechanical properties of TiB2-based ceramics. It was found that the SPS approach ensured a highly densified TiB2–SiC ceramics with enhanced Vickers hardness of 21.0 ± 1.3 GPa and fracture resistance of 7.8 ± 0.3 MPa m1/2. The performance enhancement of the resultant TiB2–SiC composite was attributed to the interlocking structure from the original anisotropic TiB2 powders, which could effectively absorb the energy and facilitate the crack deflection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号