首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stable suspensions based on methylethylketone (MEK), n-butylamine and nitrocellulose were developed for the electrophoretic deposition (EPD) of Al2O3 and ZrO2 powder. Deposits with a high green density, smooth surface and high deposition yield were obtained upon adding 10–15 vol.% n-butylamine in combination with 1 wt.% nitrocellulose. The influence of the reaction between MEK and n-butylamine, forming water and imines, on the electrophoretic deposition behaviour was investigated. Experimental results revealed that the zeta potential is not a straightforward indication of the stability of these suspensions, since the maximum absolute zeta potential did not correspond with a maximum suspension stability, due to the additional electrosteric stabilisation of the adsorbed charged nitrocellulose.  相似文献   

2.
Multi-walled carbon nanotube (MWCNT)/polyimide composite films were fabricated through electrophoretic deposition (EPD) of MWCNT-polyamic acid colloidal suspension which was derived from carboxylated-MWCNTs and poly(pyromellitic dianhydride-co-4,4′-oxydianiline) (PMDA-ODA). Under electric field, both negatively charged MWCNTs and PMDA-ODA colloid particles migrate onto a positively charged anode simultaneously, and are converted to a coherent MWCNT/polyimide composite film in the ensuing imidization reaction. Uniform dispersion of MWCNTs in the composite film was observed using transmission electron microscopy. The thickness of the prepared composite film can be tuned by varying processing conditions such as deposition time and anode conductivity. The electrical conductivity of the composite film increased with increasing the concentration of MWCNTs in EPD suspension. The mechanical reinforcement of polyimide using MWCNTs was evaluated by tensile testing and nanoindentation testing.  相似文献   

3.
The aim of this study was to obtain photocatalytic coatings, capable to decompose organic pollutants, through Electrophoretic Deposition (EPD) of enamels containing respectively 0%, 5%, 10%, 15% (in wt%) of TiO2 onto carbon steel substrates. High quality and homogeneous coatings were obtained by applying 12.5?V during 10?s, as the best EPD conditions. The layers were subsequently heat treated at 740?°C for 10?min, in order to obtain dense glazes.Rietveld refinement of XRD patterns and Raman results show that, after the heat treatment at 740?°C, TiO2 mostly exists as anatase, responsible of the photocatalytic effect. Semi-quantitative chemical analysis indicate segregation of TiO2 on the coatings surface, reaching saturation in the sample with 10?wt% TiO2. FEG-SEM observations reveal rod-like and spherical Ti-rich phases along the cross section of the coatings; some Ti was also dissolved into the enamel. 3D topographical mapping shows that, by adding TiO2, surface roughness increases significantly.Photocatalytic tests were carried out using a 2?×?10?5 M aqueous solution of Methyl Orange (MO) as an organic pollutant. By comparing the decomposition rate of MO achieved with the pure enamel (0% of TiO2) and with the sample with 10% of TiO2, it was shown that the addition of 10% of TiO2 results in 90% photocatalytic efficiency.Moreover, the permeation of organic compounds and their UV degradation were studied by measuring the water contact angle onto the enamel surface directly after dipping into oleic acid and after various UV irradiation times. The longer the UV irradiation time, the lower the contact angle, down to a minimum of 14.54° after 8?h of UV irradiation. This means, the compound was initially adsorbed on the enamel/TiO2 coating surface (10?wt% TiO2) but was efficiently decomposed upon UV irradiation.  相似文献   

4.
Alumina and polytetrafluoroethylene (Al2O3-PTFE) composite films were fabricated by a simple aerosol deposition (AD) process, to confirm its applicability for various display screens requiring water resistant, anti-smudge and easy-to-clean properties. The surface morphologies, hydrophobic properties, and transparencies of the composite films with different PTFE contents, varying from 0.01 to 1?wt% were investigated. As a result, the composite films with over 0.3?wt% PTFE showed a sudden rise in surface roughness and low transmittance, despite having the highest contact angle of 128° at a PTFE content of 0.3?wt%. From the energy dispersive spectrometer analysis, the crash-cushioning effect of PTFE and agglomerated PTFE particles were determined to be major causes of surface roughness and opacity. In contrast, the transmittance showed a tendency to be enhanced, with an increasing PTFE content in the range of 0.01, 0.05, and 0.1?wt% PTFE, respectively. Especially, the film with 0.1?wt% of PTFE had contact angle of 111° and exhibited a high transmittance of over 75%, which was inferred to be an appropriate amount of PTFE, with a high elongation filling up the surface and the internal defects, leading to an enhancement of transparency. Consequently, these results implied that the AD-prepared Al2O3-PTFE composite coatings are promising candidates for various display applications.  相似文献   

5.
In this paper, ZnCo2O4 was deposited on nickel substrate by electrophoretic deposition (EPD) method as electrocatalyst for the oxygen evolution reaction. The effect of electrophoresis variables including the deposition time, the applied voltages was discussed. XRD, SEM, and electrochemical measurement techniques were used to characterize the deposit and ZnCo2O4/Ni electrode. Compared with the ZnCo2O4 electrode prepared by nitrate decomposition method, the electrophoretic ZnCo2O4 electrodes exhibit better electrocatalytic properties and higher mechanical stability. And the electrode prepared at 10 V for 5 min has the best electrocatalytic properties with the overpotential of only 0.203 V at current density of 100 mA cm−2.  相似文献   

6.
Al2O3 coatings with large specific surface were prepared on cast nickel-based superalloy K418 by cathode plasma electrolytic deposition (CPED) in aqueous solutions at different concentrations. The significance of energy consumption and a simple calculation method during CPED were proposed, and the influence of electrolyte concentration on current density-voltage curve, energy consumption, and microstructure of coatings were studied. It was found that increasing the concentration of electrolyte can effectively reduce the current density at the initial stage while prolonging the deposition time and stepping up the energy consumption of whole coating preparation. The morphology observation results showed that the pore size of Al2O3 coatings enlarges with the increase of the concentration, and the optimum electrolyte concentration is 0.5–1 mol L?1. Under this condition, the new method of oxidation pretreatment at 950 ℃ on samples for 30 min can efficiently decrease the current density during the early stage of preparation, which is beneficial to the deposition of complex-shaped samples with large size.  相似文献   

7.
The oxidation-resistance of thin film sensors, particularly at high temperatures, is critical for the lifetime and performance of the sensor. The preparation and oxidation-resistance of an Al2O3/ZrBN-SiCN/Al2O3 composite film with a sandwich-structure was performed using reactive magnetron sputtering. The microstructure evolution of the composite film is examined herein using X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) analysis. Oxygen diffusion was significantly inhibited by the formation of crystalline Al2SiO5 and Zr-B-C amorphous phase inside the composite film. The Pt-13%Rh/Pt thin film thermocouple (TFTC) with the Al2O3/ZrBN-SiCN/Al2O3 composite film as a protective layer was fabricated and calibrated. Both the stability and lifetime of the TFTC was significantly enhanced for temperatures up to 1000?℃. The test error of the TFTC was reduced by half, compared with that of the TFTC with the Al2O3 protective layer, indicating an excellent oxidation-resistant performance of the composite film.  相似文献   

8.
Atomic layer deposition (ALD) of aluminum oxide thin films on diamond was demonstrated for the first time, and the film properties as a gate insulator for diamond field effect transistor (FET) were examined. The interface between the aluminum oxide and the diamond was abrupt, and the ratio of aluminum to oxygen in the film was confirmed to be stoichiometric by Rutherford back scattering. Even a bumpy surface of polycrystalline diamond film was conformally covered by the Al2O3 films. To evaluate the feasibility of the film for FET gate insulator, the electrical characteristics of the Al2O3 films deposited by ALD on diamond were measured using metal–insulator–semiconductor structure. It was found that the Al2O3 films deposited by ALD were better than those deposited by conventional methods, which indicates that the ALD-Al2O3 films are feasible for gate insulators of diamond FETs.  相似文献   

9.
Al2O3/Cu-O composites were fabricated from the paper-derived alumina matrix infiltrated with a Cu-3.2?wt% O alloy. Paper-derived alumina preforms with an open porosity ranging from ~ 14 to ~ 25?vol% were prepared by sintering of alumina-loaded preceramic papers at 1600?°C for 4?h. Pressureless infiltration at 1320?°C for 4?h of the preforms with Cu–O alloy resulted in the nearly dense materials with good mechanical and electrical properties, e.g. fracture toughness up to 6?MPa?m0.5, four-point-bending strength up to 342?MPa, Young's modulus up to 281?GPa and electrical conductivity up to 2?MS/m depending on the volume fraction of copper alloy in the composites. The technological capability of this approach was demonstrated using prototypes in various engineering fields fabricated by lamination, corrugating and Laminated Object Manufacturing (LOM) methods.  相似文献   

10.
Thermal sprayed ceramic coatings have extensively been used in components to protect them against friction and wear. However, the poor lubricating ability severely limits their application. Herein, yttria-stabilized zirconia (YSZ)/MoS2 composite coatings were successfully fabricated on steel substrate with the combination of thermal spraying technology and hydrothermal reaction. Results show that the synthetic MoS2 powders are composed of numbers of ultra-thin sheets (about 7 ~ 8?nm), and the sheet has obvious lamellar structure. After vacuum impregnation and hydrothermal reaction, numbers of MoS2 powders, look like flowers, generate inside the plasma sprayed YSZ coating. Moreover, the growing point of the MoS2 flower is the intrinsic micro-pores of YSZ coating. The friction and wear tests under high vacuum environment indicate that the composite coating has an extremely long lifetime (>?100,000 cycles) and possesses a low friction coefficient less than 0.1, which is lower by about 0.15 times than that of YSZ coating. Meanwhile, the composite shows an extremely low wear rate (2.30?×?10?7 mm3 N?1 m?1) and causes slight wear damage to the counterpart. The excellent lubricant and wear-resistant ability are attributed to the formation of MoS2 transfer films and the ultra-smooth of the worn surfaces of hybrid coatings.  相似文献   

11.
Pt/Al2O3 catalysts with Pt loadings ranging from 0.5 to 11 wt.% were synthesized by supercritical carbon dioxide (scCO2) deposition method. Transmission electron microscopy (TEM) images showed that the synthesized catalysts contained small Pt nanoparticles (1–4 nm in diameter) with a narrow size distribution, no observable agglomeration, and uniformly dispersed on the alumina support. The catalysts were found to be active for hydrodesulfurization of dibenzothiophene (DBT) dissolved in n-hexadecane (n-HD) without sulfiding the metal phase. The reaction proceeded only via the direct hydrogenolysis route in the temperature range 310–400 °C and at atmospheric pressure. The activity increased with increasing the metal loading. Increasing [H2]0/[DBT]0 by either increasing [H2]0 or decreasing [DBT]0, increased the DBT conversion. At a fixed weight hourly space velocity and feed concentration, conversion did not increase with increasing temperature beyond 330 °C. The presence of toluene inhibited the catalyst activity presumably due to competitive adsorption between DBT and toluene. Under the operating conditions, the reaction was far from equilibrium.  相似文献   

12.
《Ceramics International》2023,49(6):9647-9656
In this work, graphene oxide (GO)/hydroxyapatite (HA) composite coatings were successfully prepared on titanium substrate by electrophoretic deposition technology. Subsequently, microstructure, phase composition, adhesion strength, hydrophilicity, corrosion resistance, bioactivity, antibacterial activity and biocompatibility of the coating were evaluated. The adhesion strength of coating increased by 76% from 6.46 MPa to 17.81 MPa with 0 wt% GO to 12 wt% GO and the corrosion rate of coating with 8 wt% GO was achieved at the minima of (1.493 × 10-3mm/a). Biomineralization experiment indicated the excellent bioactivity of GO/HA composite coatings. The water contact angle of the composite coatings increased from 20.6°(0 wt% GO) to 38.1°(12 wt%GO). The antibacterial rates of coating with 5 wt% GO was 96.7%, while declined to 25% after thermal treatment. In-vitro L929 cell culture experiments indicated the composite coatings with 5 wt% GO exhibited good biocompatibility.  相似文献   

13.
Ceramic films have been applied to improve the resistance against high temperature oxidation of carbon steels. Alumina film was prepared on carbon steel surface by a dip coating technique. Electroless Ni–P plating film has been pre-deposited as an intermediate layer to improve the adherence of the film to carbon steel substrate. The oxidation kinetics of coated sample was investigated by measuring weight gain at 800 °C for 100 h. The surface and cross-section morphology of samples before and after oxidation were characterized by scanning electron microscopy (SEM). The composition and element distribution at the interface of the coated samples were analyzed by energy dispersive spectroscopy (EDS) and EMAX.The results show that the composite coating is uniform. The alumina coating adhesion strength to the substrate is up to 20 ± 2 N in scratch test because the alumina film presents interdiffusion of nickel and aluminum during heat treatment. The oxidation resistance test indicates higher oxidation resistance of as-coated carbon steel comparing to uncoated ones.  相似文献   

14.
Semiconductor particles doped Al2O3 coatings were prepared by cathode plasma electrolytic deposition in Al(NO3)3 electrolyte dispersed with SiC micro- and nano-particles (average particle sizes of 0.5–1.7?µm and 40?nm respectively). The effects of the concentrations and particle sizes of the SiC on the microstructures and tribological performances of the composite coatings were studied. In comparison with the case of dispersing with SiC microparticles, the dispersion of SiC nanoparticles in the coatings was more uniform. When the concentration of SiC nanoparticles was 5?g/L, the surface roughness of the composite coating was reduced by 63%, compared with that of the unmodified coating. Friction results demonstrated that the addition of 5?g/L SiC nanoparticles reduced the friction coefficient from 0.60 to 0.38 and decreased the wear volume under dry friction. The current density and bath voltage were measured to analyze the effects of SiC particles on the deposition process. The results showed that the SiC particles could alter the electrical behavior of the coatings during the deposition process, weaken the bombardment of the plasma, and improve the structures of the coatings.  相似文献   

15.
An integration technology was employed to prepare TiC-TiB2 strengthening coating on aluminum alloys, with the combination of Self-propagating high-temperature synthesis (SHS) and Vacuum-expendable pattern casting (VEPC). During the VEPC process, the Ti-C-B4C-TP SHS reaction was ignited by molten Al alloy, resulting in the simultaneous obtainment of TiC-TiB2 SHS coating with the cast Al alloy. Specifically, Teflon (PTFE) as reaction promoter was introduced into the SHS system to guarantee the reaction to be ignited successfully. With 3.8?wt% PTFE addition, homogeneous and dense TiC-TiB2 coating microstructure was obtained. Compared to the matrix, the hardness of the surface coating increased from 80 HB to 284 HB. And, the weight loss decreased from 533?mg to 52?mg at load of 20?N, indicating the significant improvement of wear resistance. In addition, a comprehensive bonding strength of 160?MPa was achieved. The proposed method for preparing hard coating on Al alloys broadens their industry application, where higher hardness and better wear resistance are required.  相似文献   

16.
Composite coatings Ni/Al2O3 were electrochemically deposited from a Watts bath. Al2O3 powder with particle diameter below 1 μm was codeposited with the metal. The obtained Ni/Al2O3 coatings contained 5-6% by weight of corundum. The structure of the coatings was examined by scanning electron microscopy (SEM). It has been found that the codeposition of Al2O3 particles with nickel disturbs the nickel coating's regular surface structure, increasing its microcrystallinity and surface roughness. DC and AC electrochemical tests were carried out on such coatings in a 0.5 M solution of Na2SO4 in order to evaluate their corrosion resistance. The potentiodynamic tests showed that the corrosion resistance of composite coating Ni/Al2O3 is better than that of the standard nickel coating. After 14 days of exposure the nickel coating corrodes three times faster than the Ni/Al2O3 coating. The electrochemical behaviour of the coatings in the corrosive solution was investigated by electrochemical impedance spectroscopy (EIS). An equivalent circuit diagram consisting of two RC electric circuits: one for electrode, nickel corrosion processes and the other for processes causing coating surface blockage, were adopted for the analysis of the impedance spectra. The changes in the charge transfer resistance determined from the impedance measurements are comparable with the changes in corrosion resistance determined from potentiodynamic measurements.  相似文献   

17.
Cylindrical SiC-based composites composed of inner Si/SiC reticulated foam and outer Si-infiltrated SiC fiber-reinforced SiC (SiCf/Si/SiC) skin were fabricated by the electrophoretic deposition of matrix particles into SiC fabrics followed by Si-infiltration for high temperature heat exchanger applications. An electrophoretic deposition combined with ultrasonication was used to fabricate a tubular SiCf/SiC skin layer, which infiltrated SiC and carbon particles effectively into the voids of SiC fabrics by minimizing the surface sealing effect. After liquid silicon infiltration at 1550 °C, the composite revealed a density of 2.75 g/cm3 along with a well-joined interface between the inside Si/SiC foam and outer SiCf/Si/SiC skin layer. The results also showed that the skin layer, which was composed of 81.4 wt% β-SiC, 17.2 wt% Si and 1.4 wt% SiO2, exhibited a gastight dense microstructure and the flexural strength of 192.3 MPa.  相似文献   

18.
In this research work, aluminium oxide/yttria stabilized zirconia (20%Al2O3/80%8YSZ) and ceria/yttria stabilized zirconia (20%CeO2/80%8YSZ) were coated through atmospheric plasma spray technique (APS) as thermal barrier coating (TBC) over CoNiCrAlY bond coat on aluminium alloy (Al-13%Si) substrate piston crown material and their thermal cycling behavior were studied experimentally. Thermal cycle test of both samples were conducted at 800?°C. Microstructural, phase and elemental analysis of the TBC coatings were experimentally investigated. The performance, combustion and emission characteristics of Al2O3/8YSZ, CeO2/8YSZ TBC coated and uncoated standard diesel engine were experimentally investigated. The test results revealed that CeO2/8YSZ based TBC has an excellent thermal cycling behavior in comparison to the Al2O3/8YSZ based TBC. The spallation of the Al2O3/8YSZ TBC occurred mainly due to the formation of thermally grown oxide (TGO), and growth of residual stresses at top coating and bond coating interface. The experimental results also revealed that the increase of brake thermal efficiency and reduction of specific fuel consumption for both TBC coated engine. Further reduction of HC, CO and smoke and increase of NOx emission were recorded for both TBC coated engine compared to the standard diesel engine.  相似文献   

19.
The addition of bio-inert ceramics such as alumina and zirconia can significantly improve the mechanical properties of hydroxyapatite bioactive coatings and increase their biocompatibility. In the present study, the surface of a titanium substrate was coated by the electrophoretic deposition method (EPD). Moreover, the reaction bonding process has been used to precipitate the nanocomposite containing the hydroxyapatite (HA), alumina, yitteria-stabilized zirconia (YSZ). The coating process was performed by an electrical power supply and a suspension of hydroxyapatite, aluminum, and YSZ nanopowders. For preparing a suspension consisting of 50% isopropanol and 50% acetone, 0.6 g/L of iodine was used as a stabilizer. Green and sintered coatings were analyzed by FE-SEM and XRD. In addition, the mechanical properties such as bonding strength, hardness, and toughness were measured. The hardness, bonding strength, and toughness of the HA coating were 107 ± 10.3 HV, 10.8 ± 3.2MPa, and 0.72MPa√m, respectively, while those of the HA-Al2O3-YSZ nanocomposite coating were 213 ± 1.8 HV, 35 ± 1.6MPa, and 1.6MPa√m, respectively.  相似文献   

20.
Surface modification and characterization of TiO2 nanoparticles as an additive in a polyacrylic clear coating were investigated. For the improvement of nanoparticles dispersion and the decreasing of photocatalytic activity, the surface of nanoparticles was modified with binary SiO2/Al2O3. The surface treatment of TiO2 nanoparticles was characterized with FTIR. Microstructural analysis was done by AFM. The size, particle size distribution and zeta potential of TiO2 nanoparticles in water dispersion was measured by DLS method. For the evaluation of particle size and the stability of nanoparticles in water dispersions with higher solid content the electroacoustic spectroscopy was made. To determine the applicability and evaluate the transmittance of the nano-TiO2 composite coatings UV–VIS spectroscopy in the wavelength range of 200–800 nm was employed. The results showed that surface treatment of TiO2 nanoparticles with SiO2/Al2O3 improves nanoparticles dispersion and UV protection of the clear polyacrylic composite coating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号