首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Ceramics International》2020,46(6):7896-7902
Aqueous gelcasting is inappropriate for the preparation of highly porous ceramics, due to the large drying shrinkage of green bodies caused by the high surface tension of water. To solve this problem, non-aqueous gelcasting using organic solvents with much lower surface tension was developed. However, for most organic solvents, the precipitation polymerization of gels led to the low strength of green bodies, which was inconvenient for the fabrication of large size workpieces. In this work, a novel ethylene glycol-based gelcasting was developed to prepare highly porous SiC ceramics. Ethylene glycol induced the solution polymerization of gels and increased the strength of green bodies effectively. In addition, the high flexibility of the ethylene glycol-based gels could release the inner stress in the drying process. Highly porous SiC ceramics with large size were successfully prepared by the optimized gelcasting method.  相似文献   

2.
We herein report a novel strategy for direct ink writing of porous SiC parts by using geopolymers (GP) as binders and sintering SiC/GP composites at high temperatures via carbothermal reduction. The effects of treatment temperatures on the microstructure, pore size distribution and compressive strength of SiC/GP composites were systematically investigated. The total porosity of porous SiC carriers was as high as 76.4 vol% after being sintered at 1800 °C and exhibited a much broader pore size distribution (pore volumes) between 39 nm and 13.951 µm (~1.68 mL/g) accompanied by an interconnected hierarchical porous structure. After loading lamellar graphene oxide into the porous SiC carrier to form GO/SiC adsorbents, they exhibited fast and near-unity removal of methylene blue, and the adsorption efficiency still exceeded 82.0% after multiple times usage. These results prove that it is possible to remove hazardous materials from wastewater using reusable porous SiC ceramics as reusable adsorbent carriers.  相似文献   

3.
《Ceramics International》2016,42(4):5018-5023
Mullite fibrous ceramics were successfully prepared by a TBA-based gel-casting with mullite fibers as the main matrix. The effects of the fiber length and the gel-casting solid loading on the composite properties and microstructure were investigated. The 3D structure of the composite was constructed by the randomly arranged mullite fibers with the fixed crossing point, and therefore the fiber length was the most important factor influencing the microstructure of the composition. Further analyses indicate that long fibers were more suitable for the fabrication of high porosity composite. Compared with controlling the fiber length, adjusting the gel-casting solid loading was an easy method of tailoring the properties of the composite. The composite fabricated with the low solid loading and long fibers exhibited a high porosity, a low thermal conductivity, and an excellent elastic property, and can be regarded as a potential high-temperature thermal insulator applied in the industrial or aerospace thermal protection system.  相似文献   

4.
《Ceramics International》2016,42(8):9550-9556
Tin selenide (SnSe) based thermoelectric materials with varying amounts of embedded silicon carbide (SiC) particles were fabricated, and their thermoelectric properties were investigated. The SiC particles were evenly distributed in the SnSe matrix, thereby leading to the formation of the SiC/SnSe composite samples. The introduction of SiC into the SnSe matrix improved the power factors, owing mainly to an increase in the Seebeck coefficient, and a decrease in the thermal conductivity arising from the formation of phonon-scattering centers. Consequently, a ZT of 0.125 (at 300 K) was obtained for the SiC/SnSe composite with a SiC content of 1 wt%; this value was larger than that of the pristine SnSe. The results of this study indicate that the introduction of SiC particles into the SnSe matrix constitutes an efficient strategy for achieving thermoelectric enhancement for solid-state applications.  相似文献   

5.
SiC porous ceramics were prepared by heating mixtures of Si powder and carbon black at 900 °C for 24 h in Na vapor. The grains of the Si powder were not only the source of Si for SiC but also served as templates for the pores in the SiC porous ceramics. Angular-shaped pores with sizes of 2-10, 10-150 and 50-150 μm were formed by angular Si grains with sizes of ≤10, ≤50 and ≤150 μm, respectively. The porosity of the SiC porous ceramics was around 55-59%. Spherical pores were also formed when spherical Si grains were used. A bending strength of 14 MPa was measured for the SiC porous ceramics prepared with the Si grains (≤50 μm).  相似文献   

6.
《Ceramics International》2016,42(11):12613-12616
In the present study, porous silicon carbide ceramics were prepared via spark plasma sintering at relatively low temperatures using Al2O3 and CeO2 as sintering additives. Sacrificial template was selected as the pore forming mechanism, and gelcasting was used to fix the slurry in a short time. The evolution process of the microstructures during different steps was observed by SEM. The influence of the sintering temperature and sintering additives on the shrinkage and porosity of the samples was studied. The microstructures of different samples were characterized, and the mechanical properties were also evaluated.  相似文献   

7.
《Ceramics International》2017,43(15):11855-11863
A new gradient pore structure in porous SiC ceramics was fabricated by low pressure chemical vapor infiltration (LPCVI). Effects of deposition duration on the mechanical properties and permeability of porous SiC ceramics were investigated. Results demonstrated that pore diameter and shapes decreased from the surface to the interior along with LPCVI duration. Porous SiC ceramics with deposition duration of 160 h exhibited flexural strength of 48.05 MPa and fracture toughness of 1.30 MPa m1/2, where 221% and 189% improvements were obtained compared to porous SiC ceramics without LPCVI, due to CVI-SiC layer strengthening effect. Additionally, at the same gas velocity, pressure drop increase rate was faster due to apparent porosity and pore size change.  相似文献   

8.
Excellent microwave absorption properties of porous SiC ceramics were successfully synthesized using SiC/camphene slurries with various polycarbosilane (PCS) contents related to the SiC powder. The compositions of the nanowires (NWs) growth in the pore channels of porous SiC ceramics strongly depended on the pyrolysis atmosphere, with N2-generating Si3N4 NWs and Ar SiC NWs. With the increase of PCS content, the minimum reflection coefficient (RC) of porous SiC ceramics decreased from ?7.6 dB to ?67.4 dB in Ar and from ?10.9 dB to ?24.7 dB in N2, respectively. The effective absorption bandwidth (EAB) of porous SiC ceramics could be up to 8.1 GHz in Ar and 4.5 GHz in N2. The enhanced microwave absorption properties of porous SiC ceramics could be attributed to the formation of SiC nano-crystalline, nanosized carbon and the NWs, which would increase the amount of boundaries and defects, leading to the electronic dipole polarization and interfacial scattering.  相似文献   

9.
SiC porous ceramics can be prepared by introducing the polyurethane preparation method into the production process of ceramic biscuits, followed by sintering at 1300?°C for 2?h under N2 flux after the cross-linking of polycarbosilane at 220?°C for 4?h in air. The microstructures, mechanical properties and infiltrations of the SiC porous ceramics are investigated in detail. The best dispersal effect comes from the SiC slurry with xylene as the solvent and a mixture of Silok®7096 (1?wt%) and Anjeka®6041 (4?wt%) as the dispersant. The compressive strength of SiC porous ceramics with high porosity (69.53%) reaches 16.9?MPa. The heat treatment can increase infiltration, the rate of which (4.296?×?10?7 mm2) after the heat treatment at 750?°C in air is approximately two times faster than that before the heat treatment. The SiC porous ceramics fabricated in this study will have potential application in active thermal protection systems.  相似文献   

10.
Commercially available silicone resin and silicon carbide (SiC) powders were adopted as the starting materials for the fabrication of porous SiC ceramics. During the heat treatment process, silicone resin experienced an organic–inorganic transformation and acted as the bonding material between SiC particles at a low temperature of 1000 °C. The mean particle size of starting SiC powders and silicone resin content can control the pore size, open porosity and fracture strength. The flexural strength of porous SiC ceramics increases with increasing silicone resin content and decreasing mean particle size of SiC powders. Larger pores can be obtained with coarser starting SiC powders and higher silicone resin content. The fracture surface of porous SiC ceramics was observed.  相似文献   

11.
SiC nanowires-filled cellular SiCO ceramics were prepared using polyurethane sponge as a porous template infiltrated with silicone resin by pyrolysis at 1400 °C under Ar atmosphere. The pyrolysis temperature was an important parameter affecting the formation of SiC nanowires. The as-prepared sample obtained at 1000 °C was composed of SiCO glasses and turbostratic carbon. The SiCO ceramic was further converted into SiO2 crystals and amorphous carbon by pyrolysis at 1200 °C. With the increasing pyrolysis temperature, SiC nanocrystals embedded in the non-crystalline SiCO matrix were observed. Furthermore, the SiC nanowires were formed in the pores of the SiCO ceramic. The diameters of the SiC nanowires are in the range 80–150 nm and the lengths are up to several tens of micrometers. The growth mechanism of the nanowires was supported by the vapor-solid mechanism.  相似文献   

12.
Stems of Jute (Corchorus capsularis L.) and sticks of Cane (Calamus rotang L.), plants of immense economic importance in the Indian subcontinent, were converted into carbonaceous perform (C-preform) maintaining the circular cylindrical shapes in lengths of 0.02–0.05 m by controlled thermal processing. Plant material precursors were characterized by analysis of elemental (C, H, N) and molecular (cellulose, hemicellulose, lignin) compositions, by determination of Bulk Density (BD) and ash content and by optical microscopy and X-ray diffractometry (XRD). C-preforms were also characterized by measurement of BD and by Scanning Electron Microscopy (SEM) and XRD. The C-preforms were further subjected to infiltration with Si-melt (1823–1923 K) under vacuum. Spontaneous infiltration and reaction yielded composite ceramics preserving the morphology of native Jute Stem (JS) and Cane Stick (CS) precursors on macro and micro scale. The materials were found to be duplex composites with Si and β-SiC as crystalline phases. The end ceramics were characterized by measurement of BD, and also by SEM and by XRD. Measured mean BD of the Si/SiC composites derived from JS and CS were 2190 Kg m−3 and 2250 Kg m−3. The respective volume fractions of large diameter (>100 μm) bulk pores were 0.134 and 0.204, in the composites derived from JS and CS. Taking into account the measured volume fraction internal pores of 0.11 and 0.149, the volume fractions of SiC were calculated to be 0.136 and 0.307 in the composites derived from JS and CS respectively, closely tallying with those calculated from the C-preform bulk densities. The cellular Si/SiC ceramics derived from JS and CS having special morphologies with long and large porous channels and oriented growth of constituent phases are likely to be suitable for devices such as high temperature insulators, catalyst support structures for gas phase reactions at elevated temperatures, molten metal filters and others.  相似文献   

13.
Silica-bonded porous nano-SiC ceramics with extremely low thermal conductivity were prepared by sintering nano-SiC powder-carbon black template compacts at 600–1200 °C for 2 h in air. The microstructure of the silica-bonded porous nano-SiC ceramics consisted of SiC core/silica shell particles, a silica bonding phase, and hierarchical (meso/macro) pores. The porosity and thermal conductivity of the silica-bonded porous nano-SiC ceramics can be controlled in the ranges of 8.5–70.2 % and 0.057–2.575 Wm−1 K−1, respectively, by adjusting both, the sintering temperature and template content. Silica-bonded porous nano-SiC ceramics with extremely low thermal conductivity (0.057 Wm−1 K−1) were developed at a very low processing temperature (600 °C). The typical porosity, average pore size, compressive strength, and specific compressive strength of the porous nano-SiC ceramics were ∼70 %, 50 nm, 2.5 MPa, and 2.7 MPa·cm3/g, respectively. The silica-bonded porous nano-SiC ceramics were thermally stable up to 1000 °C in both air and argon atmospheres.  相似文献   

14.
Fabrication of wood-like porous silicon carbide ceramics without templates   总被引:1,自引:0,他引:1  
The porous silicon carbide ceramics with wood-like structure have been fabricated via high temperature recrystallization process by mimicking the formation mechanism of the cellular structure of woods. Silicon carbide decomposes to produce the gas mixture of Si, Si2C and SiC2 at high temperature, and silicon gas plays a role of a transport medium for carbon and silicon carbide. The directional flow of gas mixture in the porous green body induces the surface ablation, rearrangement and recrystallization of silicon carbide grains, which leads to the formation of the aligned columnar fibrous silicon carbide crystals and tubular pores in the axial direction. The orientation degree of silicon carbide crystals and pores in the axial direction strongly depends on the temperature and furnace pressure such as it increases with increasing temperature while it decreases with increasing furnace pressure.  相似文献   

15.
Making lightweight porous ceramics with excellent permeability applied for transpiration cooling is still challenging. Herein, an ingenious fabrication method is proposed to successfully prepare Cf/SiC(rGO)px/SiC porous ceramics possessing low density, high permeability and satisfactory mechanical properties. The introduction of carbon fibers for constructing channels and SiC(rGO)p with three-dimensional (3D) honeycomb cellular net-like structure, could effectively decrease density and improve porosity. Meanwhile, self-supporting porous skeleton, high open porosity and uniform pores distribution contribute to brilliant permeability of the products. Good interfacial compatibility among SiC(rGO)p, carbon fibers and β-SiC/SiOxCy/Cfree matrix, as well as toughening effects of carbon fibers are beneficial for enhancing fracture toughness and compressive strength. Particularly, Cf/SiC(rGO)p0.6/SiC porous ceramics exhibit low density (1.12 g·cm?3), low linear shrinkage (3.22%), especially high permeability (1.36 ×10?7 mm2), satisfactory fracture toughness (1.77 MPa·m1/2), excellent hardness (3.88 GPa) and compressive strength (6.41 MPa), focusing on potential applications as coolant medium in transpiration cooling.  相似文献   

16.
Unique porous SiC ceramics with a honeycomb structure were fabricated by a sintering-decarburization process. In this new process, first a SiC ceramic bonded carbon (SiC/CBC) is sintered in vacuum by spark plasma sintering, and then carbon particles in SiC/CBC are volatized by heating in air at 1000 °C without shrinkage. The honeycomb structure has at least two different sizes of pores; ∼20 μm in size resulting from carbon removal; and smaller open pores of 2.1 μm remaining in the sintered SiC shell. The total porosity is around 70% and the bulk density is 0.93 mg/m3. The bending and compressive strengths are 26 MPa, and 105 MPa, respectively.  相似文献   

17.
18.
《Ceramics International》2016,42(3):4470-4476
SiC/diamond coatings with excellent frictional properties were successfully prepared using graphite as substrate. Diamond particles with size of 25–38 μm were firstly bonded on graphite substrate through PVA glue, followed by chemical vapor deposition (CVD) of SiC with varied MTS flow on the diamond-coated graphite substrate to enhance the adhesion of diamond particles. The influence of the MTS flow on the SiC coatings was investigated. The results showed that polycrystalline SiC coating with good crystallinity has been obtained. With MTS flow increasing, the SiC grains feature increased surface roughness and greater sizes of the SiC crystallite resulting from the co-deposition of SiC and carbon with increased carbon containing species. Reciprocating sliding wear tests were conducted to investigate the coefficient of friction. With increasing applied load, while the low-flow specimens showed a remarkable increase in the friction coefficient resulting from degradation of the SiC coatings, the high-flow specimens maintained a relatively low friction coefficient during wear tests indicating strong holding force to diamond particles of the SiC coatings. The reason for low friction coefficient of the high-flow specimens was that GCr15 steel ball was wearing by the SiC/diamond coatings with good affinity to the substrate resulting in a flat–flat contact on the contact area.  相似文献   

19.
High temperature resistant porous ceramics are considered to be prime candidates for applications in the transpiration cooling system of a hypersonic vehicle. This paper describes a new preparation process including grinding-mould pressing-sintering process, which is successfully used to fabricate C/SiC porous ceramics with high compressive strength and excellent permeability. The effects of carbon fiber content on the microstructure, mechanical property, pore size distribution and permeability of this porous ceramic are investigated in detail. The results indicate that this porous ceramic prepared in this study exhibits high compressive strength (~270.82 MPa) and excellent permeability (~3.937 × 10?8 mm2). The C/SiC porous ceramics fabricated in this study will have potential application in active thermal protection systems.  相似文献   

20.
《Ceramics International》2016,42(3):3947-3958
Three-dimensional silicon carbide-based frameworks with hierarchical micro- and mesoporous structures (2MSiC) are prepared by employing the template method and carbonization reaction using aerosol-spray drying. The mesopores are generated by the self-assembly of a structure-directing agent, whereas the micropores originate from the partial evaporation of Si atoms during the carbonization process. During the carbonization process, the proportion of micro- and mesopores in 2MSiC can be controlled by the carbonization temperature by controlling the amount of partial evaporation of Si atoms. The 2MSiC electrode prepared using a Brij56 structure-directing agent as the mesopore template and carbonized at 1250 °C exhibits a high charge storage capacity with a specific capacitance of 259.9 F g−1 at a scan rate of 5 mV s−1 with 88.1% rate performance from 5 to 500 mV s−1 in 1 M KCl aqueous electrolyte. This outstanding electrochemical performance can be attributed to the synergistic effect of both the enhanced electric double layer properties caused by micropores and reduced resistant pathways for ion diffusion in the pores as well as a large accessible surface area for ion transport/charge storage caused by mesopores. These encouraging results demonstrate that the 2MSiC electrode prepared with Brij56 and carbonized at 1250 °C is a promising candidate for high-performance electrode materials for supercapacitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号