首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, an indium oxide (In2O3) thin film was deposited as a buffer layer between ITO (indium tin oxide) and PES (polyestersulfone) by RF (radio frequency) magnetron sputtering at room temperature, and X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) were conducted to characterise the structural variation. The random texture of the ITO/In2O3 multilayered film favoured the (2 2 2) crystallographic plane rather than the (4 0 0) plane, which was favoured in single-layer ITO films. Transmission electron microscopy (TEM) observations further indicated that the buffer layer of In2O3 film was amorphous, while the ITO film was characterised by a columnar structure that was oriented perpendicular to the substrate surface. The electrical and optical properties of ITO/In2O3 multilayered films were enhanced due to the superior crystallinity and larger grain size of the material, as observed by XRD and FESEM. The multilayered film presented an electrical resistivity of 3.1 × 10−4 Ω cm, which is significantly better than that of a single-layer ITO film without an In2O3 buffer layer (4.7 × 10−4 Ω cm). In addition, optical transmission through the multilayered film increased by 2-4% due to the widening of the band gap by 0.2 eV, which was attributed to a Burstin-Moss shift.  相似文献   

2.
Poly-crystalline In2O3-ZnGa2O4 nanocomposites were successfully synthesized by hydrothermal method with a mixed solution of In, Ga and Zn nitrates with equal mole ratio (In: Ga: Zn=1:1:1) and the ammonia was used as the precipitant. The effects of hydrothermal temperature and pH value of the mixed solution on the properties of the nanocomposites were investigated. The microstructure of the prepared In2O3-ZnGa2O4 nanocomposites was characterized by SEM and TEM, respectively. The growth mechanisms of In2O3-ZnGa2O4 nanocomposites were also preliminarily discussed in this study. Results reveal that the IGZO ceramics prepared by In2O3-ZnGa2O4 nanocomposites own a high relative density of 99.5% and low resistivity of 1.2?mΩ·cm, which can be applied to the preparation of IGZO thin film with superior performance.  相似文献   

3.
《Ceramics International》2015,41(6):7687-7692
Oil soluble In2O3 nanoparticles were synthesized via the decomposition of indium acetylacetonate in organic solution. In2O3 nanoparticle thin films were prepared by spin-coating the dichloromethane solution of In2O3 on SiO2/Si substrates and annealing at various temperatures. X-ray diffraction and scanning electron microscopy show that the In2O3 nanoparticles are spherical and the quality of thin film surface varies with annealing temperature and time. Field-effect transistor devices of the In2O3 nanoparticles were fabricated and their electronic characteristics were studied in air and nitrogen. The semiconducting properties can be tuned by modifying exposing time of the In2O3-based devices in air. The electron mobility and on–off current ratio have a dramatic change in the starting stage exposed in air, suggesting the device is sensitive to air due to the presence of nanostructures in the In2O3 thin films. The results suggest that the In2O3 thin film device may find applications in gas sensors.  相似文献   

4.
A microstructure deformation of indium oxide (In2O3) nanoparticles by an in situ thermal radiation treatment in nitrous oxide plasma was investigated. The In2O3 nanoparticles were completely transformed into nanostructured In2O3 films upon 10 min of treatment time. The treated In2O3 nanoparticle sample showed improvement in crystallinity while maintaining a large surface area of nanostructure morphology. The direct transition optical absorption at higher photon energy and the electrical conductivity of the In2O3 nanoparticles were significantly enhanced by the treatment.  相似文献   

5.
《Ceramics International》2021,47(20):28411-28418
The limiting temperature of an In2O3 thin film sensor is much lower than its melting point. Herein, the failure modes of In2O3 thin films at high temperatures, including sublimation and changes in composition, have been studied. The edge and surface layer sublimation rates increased dramatically at 1350 °C, indicating that it is the limiting temperature of no-protection In2O3 films. In addition, oxygen atoms will escape from In2O3 thin films at high temperatures, forming oxygen vacancies. As the main current carrier type in In2O3, the increasing number of oxygen vacancies affects the resistance of In2O3 thin film sensors. To solve these problems and promote the high temperature performance of In2O3 thin films, protection methods based on Al2O3 and ZrO2 layers have been investigated. The ZrO2 protective layer alleviated the serious considerable sublimation of In2O3 thin films at high temperatures, and the Al2O3 protective layer was beneficial for reduction the escape of oxygen atoms. Finally, different protection layers were evaluated by in-situ resistivity measurements of In2O3 thin films at high temperatures. The resistance of the In2O3 thin film resistor with a protective multilayer consisting of Al2O3 and ZrO2 remained stable at 1360 °C, verifying the protection method effectively increased the thermal stability of In2O3 thin films.  相似文献   

6.
The impacts of oxygen vacancies on the photocatalytic performance of In2O3 particles were never investigated previously. In this paper, cubic shape In2O3 particles were synthesized by hydrothermal method, and different concentrations of oxygen vacancies were generated in In2O3 particles by controlling the H2 gas flow rate in hydrogen plasma reduction. The SEM images confirmed that the hydrogen plasma reduction did not change the particle morphology. The existence of oxygen vacancies was determined by electron paramagnetic resonance spectrum. Finally, the photocatalytic performance of In2O3 particles with different concentration of oxygen vacancies was investigated by the degradation of Methylene Blue (MB) solution under visible light irradiation. It was observed that when the hydrogen flow rate is 2?mL/min, the sample showed the highest photocatalytic performance, a further increased flow rate resulted in a decreased photocatalytic performance, which could be attributed to the over reduction of In2O3.  相似文献   

7.
Pristine and vanadium-doped In2O3 nanofibers were fabricated by electrospinning and their sensing properties to H2S gas were studied. X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to investigate the inner structure and the surface morphology. The H2S-sensing performances were characterized at different temperatures ranging from 50 to 170 °C. The sensor based on 6 mol% V-doped In2O3 nanofibers exhibit the highest response, i.e. 13.9–50 ppm H2S at the relatively low temperature of 90 °C. In addition, the fast response (15 s) and recovery (18 s) time, and good selectivity were observed.  相似文献   

8.
Dendritic growth of bismuth oxide nanostructured films was accomplished by reactive magnetron sputtering. The deposition of the Bi2O3 template layers was adapted to abide a vapour-liquid-solid mechanism in order to develop a 3D growth morphology with high surface area templates for photocatalytic applications. TiO2 photocatalytic thin films were deposited at a later stage onto Bi2O3 layers. The obtained heterostructured films were characterized by scanning electron microscopy, X-ray diffraction and atomic force microscopy. Additionally, the photocatalytic efficiency was assessed by conducting an assay using methylene blue dye as testing pollutant under a UV-A illumination. The photocatalytic tests revealed that the Bi2O3 layers functionalized with TiO2 thin films are more efficient at degrading the pollutant, by a factor of 6, when compared with the individual layered films.  相似文献   

9.
We report on the photoluminescence properties of Sc2O3- or In2O3-doped yttria-fully-stabilized zirconia (YSZ) by sub-bandgap photo-excitation to localized electronic states of oxygen vacancies, in order to clarify the mechanism for the aging-induced decrease of ionic conductivity via vacancies known in YSZ and suppressed by such doping. A new band emerged at 2.70 eV and remained even after the aging for the Sc2O3-doped samples at the doping concentration whereof the conductivity decrease was suppressed. On the other hand, a sharp and singular increase of the photoluminescence intensity was observed for the In2O3-doped samples at the range of the dopant concentration wherein a singular conductivity drop was observed and the suppression of conductivity decrease started. It is suggested that the suppression mechanism is different between Sc2O3-doped YSZ (Sc-YSZ) and In2O3-doped YSZ (In-YSZ).  相似文献   

10.
Different ZnO nanostructured films were electrochemically grown, using an aqueous solution based on ZnCl2, on three types of transparent conductive oxides grow on commercial ITO (In2O3:Sn)-covered glass substrates: (1) ZnO prepared by spin coating, (2) ZnO prepared by direct current magnetron sputtering, and (3) commercial ITO-covered glass substrates. Although thin, these primary oxide layers play an important role on the properties of the nanostructured films grown on top of them. Additionally, these primary oxide layers prevent direct hole combination when used in optoelectronic devices. Structural and optical characterizations were carried out by scanning electron microscopy, atomic force microscopy, and optical transmission spectroscopy. We show that the properties of the ZnO nanostructured films depend strongly on the type of primary oxide-covered substrate used. Previous studies on different electrodeposition methods for nucleation and growth are considered in the final discussion.  相似文献   

11.
Electrochemical deposition of nanostructured films of zinc sulfide with the addition of copper (ZnS:Cu) has been developed. This article discusses the surface morphology, structure, and phase composition of the films deposited on glass and sitall substrates with In2O3, a tunnel transparent layer. The spectral distribution of the transmittance and reflection coefficients are obtained, based on which the absorption spectra and widths of the band gap of ZnS:Cu in the form of film have been calculated as a function of the treatment temperature. The study of the optical properties of the films has made it possible to calculate the band gap and specify the phase compositions of the obtained films.  相似文献   

12.
In this study, different amounts of Mg were doped in In2O3(Zn1−xMgxO)3 and their thin films were grown by using the RF magnetron sputtering method. The optical and electrical characteristics of the films revealed that the lattice constant decreased while the optical band gap increased as the Mg content increased, showing an inverse proportional relationship with each other. Therefore, it was found that Mg doping in indium zinc oxide (IZO) is also effective for band gap modulation as it was reported in a Mg-doped ZnO system. When IZO thin films were grown in a more reducing ambient, the carrier concentration increased which resulted in the increase of band gap energy. This was explained due to the Burstein–Moss effect.  相似文献   

13.
p-Type semiconducting copper indium diselenide thin films have been prepared onto In2O3:Sn substrates by a recently developed pulse electrodeposition method that consists in repeated cycles of three potential application steps. The Cu–In–Se electrochemical system and the related single component electrolytes were studied by cyclic voltammetry to identify the electrode processes and study the deposition processes. In situ atomic force microscopy measurements during the first 100 deposition cycles denote a continuous nucleation and growth mechanism. Particles removed by film sonication from some of the films were characterized by transmission electron microscopy and determined to consist in nanoscopic and crystalline CuInSe2. The remaining film is still crystalline CuInSe2, as assessed by X-ray diffraction.The chemical characterization by combined X-ray photoelectron spectroscopy, X-ray fluorescence and inductively coupled plasma optical emission spectroscopy, showed that films were Cu-poor and Se-poor. Raman characterization of the as-grown films showed that film composition varies with film thickness; thinner films are Se-rich, while thicker ones have an increased Cu–Se content. Different optical absorption bands were identified by the analysis of the UV–NIR transmittance spectra that were related with the presence of CuInSe2, ordered vacancy compounds, Se, Cu2−xSe and In2Se3. The photoelectrochemical activity confirmed the p-type character and showed a better response for the films prepared with the pulse method.  相似文献   

14.
We present a laser-assisted preparation of transparent europium-titanate Eu2Ti2O7 thin films with tailored structural and optical properties. We have evaluated the effects of the irradiation time on the structural and the optical properties of the films. This approach allows the preparation of nanocrystalline crack-free films and micro patterns. The amorphous thin films were prepared by a sol-gel method. The films were annealed by a CO2 laser beam for various time intervals. The laser irradiation induced a crystallization process that resulted in the formation of Eu2Ti2O7 nanocrystals. The nanocrystals regularly grew with increasing irradiation time reaching the size from 25?nm to 45?nm. A film of a thickness 480?nm exhibited an optical transmission of 91.9% that is close to the maximal theoretical limit. The film's refractive index at 632?nm was 2.26. A micrometric pattern was prepared by a direct laser writing followed by a wet chemical etching. Feasibility of the demonstrated approach, together with the high film's quality, and europium-titanate chemical resistivity open up many opportunities for advanced applications. The approach can be used for a preparation of protective coatings and integrated photonic devices such as planar optical waveguides and couplers.  相似文献   

15.
Qian Shi 《Electrochimica acta》2010,55(22):6645-25518
The kinetic behaviors of Li-ion insertion/extraction in LiV3O8 thin film have been investigated using cyclic voltammetry (CV), potentiostatic intermittent titration (PITT) and electrochemical impedance spectroscopy (EIS) method. This LiV3O8 thin film with a mixed amorphous-nanocrystalline microstructure was fabricated by RF sputtering. For the first time, the intrinsic kinetics of LiV3O8 thin film electrode is obtained. The DLi+ value is about 10−13 cm2/s in mixed amorphous-nanocrystalline microstructure LiV3O8 thin film. Different to crystalline LiV3O8 thin film, the DLi+ values do not change a lot with the increase of cell potential which is due to the absence of structural phase transition behavior in mixed microstructure LiV3O8 thin film during Li+ insertion/extraction process. This is also the reason for excellent capacity retention performance of LiV3O8 film with a mixed microstructure.  相似文献   

16.
Epitaxial indium oxide (In2O3) films have been prepared on MgO (110) substrates by metal-organic chemical vapor deposition (MOCVD). The deposition temperature varies from 500 °C to 700 °C. The films deposited at each temperature display a cube-on-cube orientation relation with respect to the substrate. The In2O3 film deposited at 600 °C exhibits the best crystalline quality. A clear epitaxial relationship of In2O3 (110)|MgO (110) with In2O3 [001]|MgO [001] has been observed from the interface area between the film and the substrate. The average transmittance of the prepared films in the visible range is over 95%. The band gap of the obtained In2O3 films is about 3.55–3.70 eV.  相似文献   

17.
The novel walnut shape MAPb0.95Mn0.05I3-xClx film was successfully synthesized by a one-step method followed by chlorobenzene anti-solvent treatment. The bandgap energy and PL intensity of perovskite film can be effectively tuned by Mn and Cl co-doping. The enlarged bandgap energy is mainly attributed to the synergistic effect of strengthened Pb-I interaction, Cl incorporation and smaller electronegativity of Mn dopants. The stronger coupling between the Mn d- and Pb p-bands, extended carriers diffusion length and more emitting defect-associated states caused by Mn and Cl co-doping are the main reasons for the enhancing PL intensity of MAPb0.95Mn0.05I3-xClx walnut shape film. This work not only helps to in-depth understand the correlation between co-doping elements and optical properties of nanostructured perovskite films, but also provides important strategy for future designing the lower-toxic nanostructured perovskite materials with enhanced electrical and optical properties.  相似文献   

18.
The development of hierarchical, porous film based current collector has created huge interest in the area of energy storage, sensor, and electrocatalysis due to its higher surface area, good electrical conductivity and increased electrode-electrolyte interface. Here, we report a novel method to prepare a hierarchically ramified nanostructured porous thin film as a current collector by dynamic hydrogen bubble template electro-deposition method. At a first time, we report a porous 3D-Ni decorated with ZnCo2O4 and Fe2O3 by simple, low-cost electrochemical deposition method. The fabricated porous 3D-Ni based electrodes showed an excellent electrochemical property such as high specific capacitance, excellent rate capability, and good cycle stability. The asymmetric solid-state supercapacitor device was fabricated using porous, 3D Ni decorated with ZnCo2O4 and Fe2O3 as the positive and negative electrodes. The fabricated ZnCo2O4//Fe2O3 asymmetric device delivered an areal capacitance of 92?mF?cm?2 at a current density of 0.5?mA?cm?2 with a maximum areal power density of 3?W?cm?2 and areal energy density of 28.8?mWh?cm?2. The higher performances of porous, 3D current collector have a huge potential in the development of high performance supercapacitor.  相似文献   

19.
A hierarchically porous cobalt oxide (Co3O4) array film, in which the skeleton is composed of ordered non-close-packed bowl array possessing nanoporous walls, is successfully prepared by electrodeposition through self-assembled monolayer polystyrene sphere template. As an anodic coloring material for electrochromic application, the hierarchically porous Co3O4 array film exhibits enhanced electrochromic properties with higher optical modulation, faster switching speed and better cycling performance, compared to dense Co3O4 film. The porous Co3O4 array film presents a quite good transmittance modulation with 42% in the visible range and also shows good reaction kinetics with fast response time of about 2 s, much higher than those of the dense film (25% and 4.5 s). The better electrochromic performances of the porous film are attributed to its highly porous morphology, which shortens the ion diffusion paths and provides bigger surface area.  相似文献   

20.
Y2O3:Eu3+ (1 at.%) translucent nanostructured ceramics with total forward transmission achieving ∼70% of the theoretical limit has been obtained by the transformation-assisted consolidation of custom-made cubic Y2O3:Eu3+ nanopowders under high pressure (HP). Sintering under the pressure of 7.7 GPa and temperatures in the 100-500 °C range leads to the partial cubic-to-monoclinic phase transition that results in two-phase Y2O3:Eu3+ nanoceramics. The average grain size of ceramics d ≤ 50 nm for both Y2O3:Eu3+ polymorph is comparable with crystallite size of initial nanopowders (d ∼ 40 nm), indicating that the grain growth factor is near unity. The phase compositions, morphology, densities, preliminary optical and luminescent properties of synthesized nanostructured ceramics have been studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号