首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Ceramics International》2016,42(6):6673-6681
Polycrystalline samples of scheelite-type Cd1−3xxGd2x(MoO4)1−3x(WO4)3x solid solution with limited homogeneity (0<x≤0.25) and cationic vacancies (denoted as ⌷) have successfully prepared by a high-temperature annealing of CdMoO4/Gd2(WO4)3 mixtures composed of 50.00 mol% and less of gadolinium tungstate. Initial reactants and obtained ceramic materials were characterized by XRD, simultaneous DTA–TG, and SEM techniques. A phase diagram of the pseudobinary CdMoO4–Gd2(WO4)3 system was constructed. The eutectic point corresponds to 1404±5 K and ~70.00 mol% of gadolinium tungstate in an initial CdMoO4/Gd2(WO4)3 mixture. With decreasing of Gd3+ content in a CdMoO4 framework, the melting point of Cd1−3xxGd2x(MoO4)1−3x(WO4)3x increases from 1406 (x=0.25) to 1419 K (x=0.0833), and next decreases to 1408 K (x=0). EPR method was used to identify paramagnetic Gd3+ centers in Cd1−3xxGd2x(MoO4)1−3x(WO4)3x for different values of x parameter as well as to select biphasic samples containing both Cd0.250.25Gd0.50(MoO4)0.25(WO4)0.75 and Gd2(WO4)3.  相似文献   

2.
《Ceramics International》2017,43(10):7839-7850
New Pb1-3xxGd2x(MoO4)1-3x(WO4)3x (0<x≤0.1774) and Pb1-3xxGd2xWO4 (0<x≤0.1154, ⌷ denotes vacancy) solid solutions were synthesized via solid state reaction route and citrate-nitrate combustion method. XRD and SEM data showed that as-prepared ceramics crystallize in the tetragonal scheelite type symmetry (space group I41/a) with the crystallite size varying between ~10 and ~40 µm (solid state method) or ~500 nm and 2 µm (combustion synthesis). A change in lattice constants (a and c), lattice parameter ratio c/a and progressive deformation of MoO4/WO4 tetrahedra with an increase of Gd content was observed. The melting point of each Gd-doped sample is lower than the melting point of adequate scheelite matrix. Ceramics under study are insulators with indirect band gap (Eg)>3 eV. EPR investigation revealed a difference among spectra obtained for varied gadolinium content, whereas synthesis method has no influence on EPR results.  相似文献   

3.
《Ceramics International》2016,42(9):10565-10571
Zinc substituted magnesium (Mg–Zn) ferrites with the general formula Mg1−xZnxFe2O4 (x=0.00, 0.25, 0.50, 0.75, and 1.00) were prepared using the solution combustion route. The dried powder after calcination (700 °C for 2 h) was compacted and sintered at 1050 °C for 3 h. The structural, morphological, dielectric and magnetic properties of the sintered ferrites were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), impedance spectroscopy, and vibration sample magnetometry (VSM). The XRD analysis of sintered samples confirmed that the expected spinel cubic phase was formed for all samples. The crystallite sizes evaluated using Scherre's formula were found to be in the range of 47–80 nm. SEM analysis showed homogeneous grains with a polyhedral structure. The electrical conductivity increased with increasing frequency, which is normal dielectric behavior for such materials. The dielectric constant, dielectric loss tangent, and AC conductivity were found to be lowest for x=0.50. The VSM results showed that the zinc concentration had a significant influence on the saturation magnetization and coercivity.  相似文献   

4.
《Ceramics International》2015,41(7):8578-8583
Gd1−xBixFe1−yZryO3 nanoparticles were synthesized via micro-emulsion route with different molar concentrations of Bi+3 (x) and Zr+4 (y). The values of x and y were kept in the range 0.00, 0.15, 0.30, 0.45 and 0.60. The characterizations were done by the thermo-gravimetric analysis (TGA), X-ray Diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The average particle size was ~50 nm. The effect of Bi3+ and Zr4+ contents on electrical, dielectric and magnetic parameters were studied. The DC resistivity measurements showed at certain Bi3+ and Zr4+ contents, more than two fold increase in electrical resistivity from 68×108 Ω cm to 150×108 Ω cm. The magnetic measurements showed the paramagnetic nature of Gd1−xBixFe1−yZryO3 nanoparticles. The electrical and magnetic properties of these nanoparticles suggested that these materials are potential candidates for the fabrication of telecommunication and switching devices.  相似文献   

5.
《Ceramics International》2016,42(3):4176-4184
The effect of the La3+ and Gd3+ co-doping on the structure, electric and magnetic properties of BiFeO3 (BFO) ceramics are investigated. For the compositions (x=0 and 0≤y≤0.15) in the perovskite structured LaxGdyBi1−(x+y)FeO3 system, a tiny residual phase of Bi2Fe4O9 is noticed. Such a secondary phase is suppressed with the incorporation of ‘La’ content (x). The magnitude of dielectric constant (εr) increases progressively by increasing the ‘La’ content from x=0 to 0.15 with a remarkable decrease of dielectric loss. For x=0.15, the system LaxGdyBi1−(x+y)FeO3 exhibits highest remanent magnetization (Mr) of 0.18 emu/g and coercive magnetic field (HC) of ~1 T in the presence of external magnetic field of 9 T at 300 K. The origin of enhanced dielectric and magnetic properties of LaxGdyBi1−(x+y)FeO3 and the role of doping elements, La3+, Gd3+ has been discussed.  相似文献   

6.
《Ceramics International》2016,42(5):5650-5658
Copper substituted Fe3O4 nanoparticles (NPs) (CuxFe1−xFe2O4 (0.0≤x≤1.0)) were synthesized by polyol method and the effect of Cu2+ substitution on structural, magnetic and optical properties of Fe3O4 was investigated. X-ray diffraction (XRD), Transmission electron microscopy (TEM), Scanning electron microscopy (SEM), UV–Visible spectroscopy and Vibrating sample magnetometer (VSM) were used to study the physical properties of the products. The room temperature (RT) magnetization (σH) curves revealed the superparamagnetic nature of the products. The extrapolated specific saturation magnetization (σs) decreases from 42.69 emu/g to 14.14 emu/g with increasing Cu content (x). The particle size dependent Langevin fit studies were applied to determine the magnetic particle dimensions (Dmag). The average magnetic particle diameter is about 9.89 nm. The observed magnetic moments of NPs are in range of (0.61–1.77) µB and rather less than 4 µB of bulk Fe3O4 and 1 µB of bulk CuFe2O4. Magnetic anisotropy was assigned as uniaxial and calculated effective anisotropy constants (Keff) are between 10.89×104 Erg/g and 26.95×104 Erg/g. The average value of magnetically inactive layer for CuxFe1−xFe2O4 NPs was calculated as 1.23 nm. The percent diffuse reflectance spectroscopy (DR%) and Kubelka–Munk theory were applied to determine the energy band gap (Eg) of NPs. The extrapolated optical Eg values from Tauc plots are between minimum 1.98 eV to 2.31 eV. From 57Fe Mössbauer spectroscopy data, the variation in line width, isomer splitting, quadrupole splitting and hyperfine magnetic field values on Cu+2 ion substitution have been determined. Although, the Mössbauer spectra for the sample x=0.2 and 0.8 are composed of paramagnetic doublets, ferromagnetic sextets were also formed for other products.  相似文献   

7.
《Ceramics International》2016,42(16):18357-18367
Microcrystalline samples of new Cd1–3xDy2xxMoO4 solid solution with limited homogeneity (0<x≤0.2222) and cationic vacancies (denoted as ⌷) were prepared by a high-temperature solid state reaction. The XRD data and SEM analysis showed that as-prepared ceramics crystallize in the tetragonal scheelite type symmetry (space group I41/a) with the crystallite size varying between ~2 and ~20 µm. A systematic change in lattice constants, a and c, as well as in lattice parameter ratio c/a with an increase of Dy content was observed. Dy-doped molybdates are paramagnets with the antiferromagnetic short-range interaction and spin-orbit coupling. Optical and electrical investigations proved Cd1–3xDy2xxMoO4 solid solution to be in the insulating state of Eg>3 eV at room temperature and the thermally activated conduction of the Arrhenius-type above 350 K. Moreover, the I-V characteristics provided the evidence of symmetrical and non-linear behavior typical of charge carrier emission weakly induced by the temperature. Relative dielectric permittivity εr below 10 as well as loss tangent tanδ below 0.15 do not substantially depend both on the temperature in the range of 76–400 K and the frequency in the range of 5·102–1·106 Hz. These results are interpreted in the framework of the acceptor and donor vacancy centers.  相似文献   

8.
《Ceramics International》2016,42(5):5762-5765
Crystalline CaLa4(Zr0.05Ti0.95)4O15 thin films deposited on n-type Si substrates byRF magnetron sputtering at a fixed RF power of 100 W, an Ar/O2 ratio of 100/0, an operating pressure of 3 mTorr, and different substrate temperatures were investigated. The surface structural and morphological characteristics analyzed by X-ray diffraction and atomic force microscopy were sensitive to the deposition conditions, such as the substrate temperature. The diffraction pattern showed that the deposited films had a polycrystalline microstructure. As the substrate temperature increased, the quality of the CaLa4(Zr0.05Ti0.95)4O15 thin films improved, and the kinetic energies of the sputtered atoms increased, resulting in a structural improvement of the deposited CaLa4(Zr0.05Ti0.95)4O15 thin films. A high dielectric constant of 16.7 (f=1 MHz), a dissipation factor of 0.19 (f=1 MHz), and a low leakage current density of 3.18×10−7 A/cm2 at an electrical field of 50 kV/cm were obtained for the prepared films.  相似文献   

9.
《Ceramics International》2015,41(4):5888-5893
The present work investigated the influence of the composition induced structure evolution on the electrocaloric effect in lead-free (0.935−x)Bi0.5Na0.5TiO3–0.065BaTiO3xSrTiO3 (BNBST, BNBSTx) ceramics. It was found that broad ∆T peak could be observed for all compositions and the electrocaloric strength α (αTmaxE) in BNBST0.02 could reach as high as 0.27 K mm/kV. The increase of the SrTiO3 concentration led to a shift of ∆Tmax to a lower temperature, resulting in a large near room-temperature electrocaloric strength α of 0.17 K mm/kV in BNBST0.22.  相似文献   

10.
《Ceramics International》2016,42(4):5391-5396
Lead-free piezoelectric ceramics, (1−x)SrBi2Nb2O9xBiFeO3 [(1−x)SBN−xBFO] (x=0.0, 0.03, 0.05, 0.07, 0.10) were prepared by a conventional solid-state reaction method. The crystal structure, microstructure and electrical properties were systematically investigated. All compositions formed layered perovskite structure without any detectable secondary phases. Plate-like morphology of the grains which is characteristic for layer-structure Aurivillius compounds was clearly observed. The excellent electrical properties (e.g., d33~19 pC/N, 2Pr~18.8 μC/cm2) and a high Curie temperature (e.g., Tc~449 °C) were simultaneously obtained in the ceramics with x=0.05. Additionally, thermal annealing studies indicated that the BFO modified SBN ceramics system possessed stable piezoelectric properties, demonstrating that the modified SBN-based ceramics are the promising candidates for high-temperature applications.  相似文献   

11.
The limited scheelite type Cd1−3xxGd2xMoO4 solid solution, where 0 < x  0.25 and □ are cationic vacancies have been successfully synthesized by high-temperature annealing of CdMoO4/Gd2(MoO4)3 mixtures composed of 50.00 mol.% and less of Gd2(MoO4)3. The obtained materials as well as CdMoO4 and Gd2(MoO4)3 were characterized by powder XRD, DTA–TG, DSC, and SEM techniques. A phase diagram of the pseudobinary CdMoO4–Gd2(MoO4)3 system was constructed. The eutectic point corresponds to 1350 ± 5 K and ∼70.00 mol.% of Gd2(MoO4)3 in an initial CdMoO4/Gd2(MoO4)3 mixture. With decreasing of Gd3+ amount in the crystal lattice of CdMoO4, a melting point of the Cd1−3xxGd2xMoO4 solid solution increases from 1351 (x = 0.25) to 1408 K (x = 0). EPR method was used to identify the paramagnetic Gd3+centers in Cd1−3xxGd2xMoO4 for different values of x parameter as well as to select biphasic samples containing both Cd0.25000.2500Gd0.5000MoO4 and Gd2(MoO4)3.  相似文献   

12.
《Ceramics International》2015,41(4):5414-5420
Zn1−xCdxO films with different Cd contents (0≤x≤1) were successfully deposited on quartz substrates by the direct current reactive magnetron sputtering and post-annealing techniques. It was found that structures, band gaps and electrical properties of the films can be tuned by changing Cd contents x. The Zn1−xCdxO film consists of wurtzite phase with highly (002)-preferred orientation at x from 0 to 0.2, mixture of wurtzite and cubic phases at x=0.5, and cubic phase with highly (200)-preferred orientation at x≥0.8. The band gap decreases from 3.25 eV at x=0 to 2.75 eV at x=0.2 for the wurtzite Zn1−xCdxO, and decreases from 2.52 eV at x=0.8 to 2.42 eV at x=1, which has a little change for cubic Zn1−xCdxO. In addition, Hall measurement results indicate that the influence of Cd content on the conduction behavior of Zn1−xCdxO films is significant. The chemical compositions and the bonding states of Zn1−xCdxO films were examined by X-ray photoelectron spectroscopy analysis.  相似文献   

13.
《Ceramics International》2015,41(8):9729-9733
CaBi4Ti4O15–Bi4Ti3O12 (CBT–BIT) ceramics were synthesized using a solid state reaction method. The X-ray diffraction (XRD) analysis revealed the existence of bismuth layered perovskite phase with orthorhombic crystal structure. High-resolution transmission electron microscopy (HRTEM) confirmed the alternate arrangement of CBT part and BIT part along c axis in the intergrowth structure. CBT–BIT ceramics showed excellent thermal stability of the dielectric loss (tan δ), but the relaxation of dielectric loss in the 100 Hz to 1 MHz frequency range had been observed. Meanwhile, an enhanced piezoelectric constant (d33) value of 15 pC/N was observed without degradation even the temperature up to 650 °C. The dc resistivity (ρdc) of CBT–BIT performed a high value of 5.68×1014  cm) at room temperature (RT). In addition, the ρdc values of CBT–BIT within the temperature range of 100–450 °C were close to those of CBT and kept almost one hundred times higher than those of BIT.  相似文献   

14.
《Ceramics International》2016,42(7):8010-8016
In the present work structural, electrical, magnetic and magnetodielectric properties of BaTi1−xFexO3 (0%≤x≤10%) ceramics have been investigated. X-ray diffraction (XRD) study reveals that the coexistence of tetragonal and hexagonal phases is strongly influenced by Fe doping concentration. The increase in Fe-doping content leads to the development of hexagonal phase along with an increase in average grain size. A reduction in the dielectric properties is also observed. All BaTi1−xFexO3 (BTFO) compositions exhibit ferroelectric behavior at room temperature. Remnant polarization (Pr) for pure BaTiO3 (BTO) has been found to be 7.50 µC/cm2 and further decreases with an increase in the Fe concentration. All Fe doped samples exhibit ferromagnetic ordering with saturation magnetization (Ms) being 26 memu/g for x=2.5%. Further, at x=5%, it decreases and thereafter again increases with Fe concentration. The magnetodielectric coefficient increases with Fe doping concentration and highest value found to be 2.80 at x=2.5%.  相似文献   

15.
《Ceramics International》2017,43(11):8378-8390
Dysprosium (Dy) substituted nickel ferrite (NiDyxFe2-xO4) powders with varying Dy content (x=0.0, 0.025, 0.05, 0.075, 0.1, 0.2) have been prepared by combustion method using DL-alanine fuel. Sintering characteristics of the powders and electrical properties of ceramics have been studied. Effective substitution of Dy3+ for Fe3+ is seen up to x=0.075 yielding improved properties, and a higher Dy content (x≥0.1) leads to partial substitution, disturbed stoichiometry, and diffusion of Dy to the grain boundaries and segregation as a secondary phase. Increasing Dy content reduces the crystallite size, powder particle size, and grain size in sintered ceramics, and the changing microstructural evolution is better resolved with back scattered electron imaging and compositional analysis. Raman spectroscopy confirms inverse spinel structure formation and substantiates the presence of secondary phase evidenced through X-ray diffraction and electron microscopy. A marginal increase in the electrical resistivity (ρdc) and magnetization are observed due to effectual substitution of Dy3+ for Fe3+ at the octahedral sites up to x=0.075. For x≥0.1, the increasing influence of highly resistive DyFeO3 secondary phase at the inter-granular boundaries leads to a rapid increase in resistivity and reduction in dielectric losses, and the magnetization is reduced due to the anti-ferromagnetic nature of the secondary phase (DyFeO3). Dense ceramics with high resistivity (~109 Ω cm), low dielectric loss (tan δ ~0.002) at 1 MHz, and high magnetization (50.07 emu/g) are obtained for an optimum Dy content of x=0.075. Dielectric response, complex impedance, and electrical modulus spectroscopy in the frequency range (10−2–106 Hz) reflect the changes in the microstructure, and suggests a non-Debye type relaxation.  相似文献   

16.
《Ceramics International》2016,42(5):5718-5730
Modified ceramic compositions of Bi3.79Er0.03Yb0.18Ti3−xWxO12 with fixed Er and Yb content, and a varying W content (x=0.0, 0.01, 0.03, 0.06 and 0.10) are prepared. The site selectivity of Er3+, Yb3+, and W6+ cations is analyzed, and their influence on the electrical and light up conversion properties is studied. Formation of single phase orthorhombic structure is confirmed with enhanced grain growth up to x=0.03, and for (x≥0.04–0.10) the grain growth is inhibited, and the orthorhombic distortion is relaxed. Raman spectroscopy reveals W6+ cation substitutes preferentially at the B-site replacing Ti4+ ions in the Bi4Ti3O12 lattice structure. Increasing W6+ donor concentration reduces the conductivity effects by lowering the oxygen vacancies. Reduced dielectric losses (tan δ=0.003) and dispersion with frequency in the range (10−2–10 Hz) are observed, and improvements in the remnant polarization (2Pr=28.86 μC/cm2) are seen up to an optimum content of x=0.03. At higher W content (x>0.03), the properties tend to degrade due to structural relaxation and microstructural changes. Up conversion photoluminescence (UC-PL) under 980 nm excitation shows strong emission in the green and red bands due to enhanced crystal field around the Er3+ ions for an optimum W content of x=0.06. A weak blue emission band around (~492 nm) is observed by cooperative emission (CE) due to radiative relaxation of an excited Yb–Yb pair from a virtual level. Variation of UC emission intensity with pump-power confirms a two-photon mechanism for the up conversion process.  相似文献   

17.
Domain structure plays an important role in determining piezoelectric properties of ferroelectric materials. However, limited studies have been carried out on the domains of (K,Na)NbO3-based lead free ceramics. The domain configuration, domain reversal behavior and piezoelectric properties of (K0.50Na0.50)1−xLix(Nb0.80Ta0.20)O3 (KNN-Lix) ceramics with x = 0.02, 0.035 and 0.05, were studied in this research. It was observed that ceramics with different phases show distinctly different domain configurations and domain reversal behaviors. When compared to other two compositions, x = 0.035 with coexistent orthorhombic-tetragonal phases at room temperature was found to possess curved domain stripes and larger average domain width, leading to optimal piezoelectric properties with d33* = 260 pm/V and kp = 48%. Based on the microstructures, polarization hysteresis loops and unipolar strain curves under high electric field, it was concluded that the larger domain size and easier domain switching are due to the coexistence of orthorhombic and tetragonal phases, account for the improved properties in KNNT-Li0.035 ceramics.  相似文献   

18.
Lead free ferroelectric ceramics near the morphotropic phase boundary (MPB) of KxNa1?x(NbO3)/KNN system (where x=0.48, 0.50, 0.52) were synthesized in the single perovskite phase by the partial co-precipitation synthesis route. The compositional dependences of phase, structure and electrical properties were studied in detail. X-ray diffraction (XRD) study revealed the coexistence of orthorhombic and monoclinic structures in K0.50N0.50NbO3. SEM characterization of the sintered KNN ceramics revealed dense and homogeneous packing of grains. Room temperature (RT) dielectric constant (εr) ~648, dielectric loss (tan δ) ~0.05 at 100 kHz, a relatively high density (ρ) ~4.49 g/cm3, remnant polarization (Pr) ~11.76 μC/cm2, coercive field (Ec) ~9.81 kV/cm, Curie temperature (Tc) ~372 °C and piezoelectric coefficient (d33) ~71 pC/N observed in K0.50N0.50NbO3 suggested that it can be an important lead free ferroelectric material.  相似文献   

19.
《Ceramics International》2015,41(7):8931-8935
The densification, microstructural evolution and microwave dielectric properties of (Ba1−xSrx)(Mg0.5W0.5)O3 ceramics with x=0, 0.25, 0.5 and 0.75 are investigated in this study. The sintering temperature of the (Ba1−xSrx)(Mg0.5W0.5)O3 is significantly reduced from 1575 °C to 1400 °C as the x value increases from 0 to 0.25 and 0.50; this result is accompanied by the formation of the (Ba1−ySry)WO4 phase and a small quantity of second phase surrounding the grains. The grain size of the (Ba1−xSrx)(Mg0.5W0.5)O3 ceramics is increased by raising the Sr2+ content, which significantly lowers the sintering temperature. The microstructure of the (Ba0.75Sr0.25)(Mg0.5W0.5)O3 ceramic displays the smallest average grain size of approximately 0.8 μm, with a narrow grain size distribution. Without long annealing time, very high Q×f values are obtained for the (Ba1−xSrx)(Mg0.5W0.5)O3 ceramics sintered at 1400–1575 °C for a duration of only 2 h. The (Ba0.75Sr0.25)(Mg0.5W0.5)O3 ceramic sintered at 1400 °C results in the best microwave dielectric properties, including εr of 20.6, Q×f of 152,600 GHz and τf of +24.0 ppm/°C.  相似文献   

20.
The composites of 0.99La0.7(CaxSr1?x)0.3MnO3/0.01CuZnFe4O4 (LCSMO/CZF) (x = 0, 0.1, 0.2, 0.3, 0.5, 0.7 and 1) were fabricated by conventional solid state reaction method, and their electrical transport and magnetoresistance (MR) properties were investigated by physical property measurement system (PPMS). The result of X-ray diffraction (XRD) and scanning electronic microscopy (SEM) indicated that no new phase appeared in the composites except LCSMO and CZF phases. CZF is mainly distributed at the grain boundaries and surfaces of the matrix. The resistivity of all the composites was measured in the range 100–350 K at 0 T, 0.5 T and 1 T magnetic field. Room temperature MR peak appears for the composites x = 0.03. The observed variation of MR with varying Ca and Sr concentration has been qualitatively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号