首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spherical LiNi1/3Co1/3Mn1/3O2 cathode particles were resynthesized by a carbonate co-precipitation method using spent lithium-ion batteries (LIBs) as a raw material. The physical characteristics of the Ni1/3Co1/3Mn1/3CO3 precursor, the (Ni1/3Co1/3Mn1/3)3O4 intermediate, and the regenerated LiNi1/3Co1/3Mn1/3O2 cathode material were investigated by laser particle-size analysis, scanning electron microscopy–energy-dispersive spectroscopy (SEM-EDS), thermogravimetry–differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), inductively coupled plasma–atomic emission spectroscopy (ICP-AES), and X-ray photoelectron spectroscopy (XPS). The electrochemical performance of the regenerated LiNi1/3Co1/3Mn1/3O2 was studied by continuous charge–discharge cycling and cyclic voltammetry. The results indicate that the regenerated Ni1/3Co1/3Mn1/3CO3 precursor comprises uniform spherical particles with a narrow particle-size distribution. The regenerated LiNi1/3Co1/3Mn1/3O2 comprises spherical particles similar to those of the Ni1/3Co1/3Mn1/3CO3 precursor, but with a narrower particle-size distribution. Moreover, it has a well-ordered layered structure and a low degree of cation mixing. The regenerated LiNi1/3Co1/3Mn1/3O2 shows an initial discharge capacity of 163.5 mA h g?1 at 0.1 C, between 2.7 and 4.3 V; the discharge capacity at 1 C is 135.1 mA h g?1, and the capacity retention ratio is 94.1% after 50 cycles. Even at the high rate of 5 C, LiNi1/3Co1/3Mn1/3O2 delivers the high capacity of 112.6 mA h g?1. These results demonstrate that the electrochemical performance of the regenerated LiNi1/3Co1/3Mn1/3O2 is comparable to that of a cathode synthesized from fresh materials by carbonate co-precipitation.  相似文献   

2.
Economy and efficiency are two important indexes of lithium-ion batteries (LIBs) materials. In this work, nitrogen doped hollow porous coaxial carbon fiber/Co3O4 composite (N-PHCCF/Co3O4) is fabricated using the fibers of waste bamboo leaves as the template and carbon resource by soaking and thermal treatment, respectively. The N-PHCCF/Co3O4 exhibits an outstanding electrochemical performance as anode material for lithium ion batteries, due to the nitrogen doping, coaxial configuration and porous structure. Specifically, it delivers a high discharge reversible specific capacity of 887 mA h g?1 after 100 cycles at the current density of 100 mA g?1. Furthermore a high capability of 415 mA h g?1 even at 1 A g?1 is exhibited. Most impressively, the whole process is facile and scalable,exhibiting recycling of resource and turning waste into treasure in an eco-friendly way.  相似文献   

3.
Optimization of electrodes for charge storage with appropriate processing conditions places significant challenges in the developments for high performance charge storage devices. In this article, metal cobaltite spinels of formula MCo2O4 (where M = Mn, Zn, Fe, Ni and Co) are synthesized by oxalate decomposition method followed by calcination at three typical temperatures, viz. 350, 550, and 750 °C and examined their performance variation when used as anodes in lithium ion batteries. Phase and structure of the materials are studied by powder x-ray diffraction (XRD) technique. Single phase MnCo2O4,ZnCo2O4 and Co3O4 are obtained for all different temperatures 350 °C, 550 °C and 750 °C; whereas FeCo2O4 and NiCo2O4 contained their constituent binary phases even after repeated calcination. Morphologies of the materials are studied via scanning electron microscopy (SEM): needle-shaped particles of MnCo2O4 and ZnCo2O4, submicron sized particles of FeCo2O4 and agglomerated submicron particle of NiCo2O4 are observed. Galvanostatic cycling has been conducted in the voltage range 0.005–3.0 V vs. Li at a current density of 60 mA g?1 up to 50 cycles to study their Li storage capabilities. Highest observed charge capacities are: MnCo2O4 – 365 mA h g?1 (750 °C); ZnCo2O4 – 516 mA h g?1 (550 °C); FeCo2O4 – 480 mA h g?1 (550 °C); NiCo2O4 – 384 mA h g?1 (750 °C); and Co3O4 – 675 mA h g?1 (350 °C). The Co3O4 showed the highest reversible capacity of 675 mA h g?1; the NiO present in NiCo2O4 acts as a buffer layer that results in improved cycling stability; the ZnCo2O4 with long needle-like shows good cycling stability.  相似文献   

4.
《Ceramics International》2016,42(13):14587-14594
A facile chemical deposition method has been adopted to prepare cerium fluoride (CeF3) surface modified LiNi1/3Co1/3Mn1/3O2 as cathode material for lithium-ion batteries. Structure analyses reveal that the surface of LiNi1/3Co1/3Mn1/3O2 particles is uniformly coated by CeF3. Electrochemical tests indicate that the optimal CeF3 content is 1 wt%. The 1 wt% CeF3-coated LiNi1/3Co1/3Mn1/3O2 can deliver a discharge capacity of 107.1 mA h g−1 even at 5 C rate, while the pristine does only 57.3 mA h g−1. Compared to the pristine, the 1 wt% CeF3-coated LiNi1/3Co1/3Mn1/3O2 exhibits the greatly enhanced capacity and cycling stability in the voltage range of 3.0–4.5 V, which suggests that the CeF3 coating has the positive effect on the high-voltage application of LiNi1/3Co1/3Mn1/3O2. According to the analyses from electrochemical impedance spectra, enhanced electrochemical performance is mainly because the stable CeF3 coating layer can prevent the HF-containing electrolyte from continuously attacking the LiNi1/3Co1/3Mn1/3O2 cathode and retard the passivating layer growth on the cathode.  相似文献   

5.
《Ceramics International》2017,43(3):3218-3223
In this work, the nanosized porous MnCo2O4 microspheres were synthesized by a hydrothermal method and their electrochemical behaviors were investigated based on a carbon supported composite air electrode for rechargeable sodium-air batteries. Under dry air test condition, the MnCo2O4/C air electrode demonstrated a stable working voltage of around 2.1 V vs. Na+/Na and a high initial discharge capacity of 7709.4 mA h g−1, based on the active material mass, at a current density of 0.1 mA cm−2. By a limit on the depth of discharge, the cell exhibited a specific capacity of 1000 mA h g−1 with a high cycling stability up to 130 cycles. The considerable electrocatalytic activity suggests that the as-proposed MnCo2O4 is a highly efficient catalyst as air electrode for rechargeable sodium-air batteries.  相似文献   

6.
《Ceramics International》2017,43(13):9960-9967
P2-type layered Na2/3Ni1/4Mn3/4O2 has been synthesized by a solid-state method and its electrochemical behavior has been investigated as a potential cathode material in aqueous hybrid sodium/lithium ion electrolyte by adopting activated carbon as the counter electrode. The results indicate that the Na+/Li+ ratio in aqueous electrolyte has a strong influence on the capacity and cyclic stability of the Na2/3Ni1/4Mn3/4O2 electrode. Increase on the Li+ content leads to a shift of the redox potential towards a high value, which is favorable for the improvement of the working voltage of the layered material as cathode. It is found that the coexistence of Na+ and Li+ in aqueous electrolyte can improve the cyclic stability for the Na2/3Ni1/4Mn3/4O2 electrode. A reversible capacity of 54 mAh g−1 was obtained with a high cyclability as the Na+/Li+ ratio was 2:2. Furthermore, an aqueous hybrid ion cell was assembled with the as-proposed Na2/3Ni1/4Mn3/4O2 as cathode and NaTi2(PO4)3/graphite synthesized in this work as anode in 1 M Na2SO4/Li2SO4 (mole ratio as 2:2) mixed electrolyte. The cell shows an average discharge voltage at 1.2 V, delivering an energy density of 36 Wh kg−1 at a power density of 16 W kg−1 based on the total mass of the active materials.  相似文献   

7.
A flexible, free-standing composite anode with Li4Ti5O12 nanosheet arrays anchoring on plain-weaved carbon fiber cloth (LTO@CC) is prepared by a hydrothermal and post-annealing process assisted by a TiO2 seed layer. The LTO@CC anode free from polymeric binder and conducting agent exhibited much higher lithium storage capacity and cycling stability than the conventional slurry-processed electrode using the dandelion-like Li4Ti5O12 microspheres prepared by the same hydrothermal process. A high specific capacity of 128.8 mA h g?1 was obtained at a current rate of 30 C (1 C = 175 mA g?1), and almost negligible capacity loses was observed when the cell was cycled at 10, 20 and 30 C each for 100 cycles. The carbon fiber matrix contributed to Li storage at low current rate, but the LTO nanosheet arrays have played the dominant role on the excellent rate capability. The improved electrochemical performance can be attributed to the synergetic effect between the hierarchical Li4Ti5O12 nanosheet arrays and the carbon fiber matrix, which integrated short Li+ diffusion length, three-dimensional conductive architecture and well preserved structural integrity during the high rate and repeated charge-discharge measurements.  相似文献   

8.
《Ceramics International》2016,42(13):14855-14861
Pure spherical Li4Ti5O12 spinel material is quickly synthesized via an efficient hydrothermal procedure. The obtained Li4Ti5O12 particle size is about 0.5 µm. The Li4Ti5O12 has an initial discharge capacity of 162.2 mA h g−1 and capacity retention of 97.5% after 100 cycles at a rate of 0.2 C. Then, a 2.5 V and long-lasting Li-ion cell with a LiMn2O4 cathode and a Li4Ti5O12 anode is developed. Electrochemical measurements of the cell indicate that the Li4Ti5O12/LiMn2O4 full cell, with a weight ratio of 1.5 between cathode and anode, exhibits excellent electrochemical performance, delivering a reversible capacity of 130 mA h g−1 at room temperature. The full cell also exhibits outstanding electrochemical performances at high temperature, as it has an initial discharge capacity of 109.6 mA h g−1, along with a capacity retention rate of 88.9% after 100 cycles at 55 °C.  相似文献   

9.
《Ceramics International》2017,43(14):10905-10912
Herein, a MnFe2O4/graphene (MnFe2O4/G) nanocomposite has been synthesized via a facile N2H4·H2O-induced hydrothermal method. During the synthesis, N2H4·H2O is employed to not only reduce graphene oxide to graphene, but also prevent the oxidation of Mn2+ in alkaline aqueous solution, thus ensuring the formation of MnFe2O4/G. Moreover, MnFe2O4 nanoparticles (5–20 nm) are uniformly anchored on graphene. MnFe2O4/G electrode delivers a large reversible capacity of 768 mA h g−1 at 1 A g−1 after 200 cycles and high rate capability of 517 mA h g−1 at 5 A g−1. MnFe2O4/G holds great promise as anode material in practical applications due to the outstanding electrochemical performance combined with the facile synthesis strategy.  相似文献   

10.
Cobalt oxide nanoparticles@nitrogen-doped reduced graphene oxide (Co3O4@N-rGO) composite and nitrogen-doped graphene dots (N-GDs) were synthesized by a one-pot simple hydrothermal method. The average sizes of the synthesized bare cobalt oxide nanoparticles (Co3O4 NPs) and Co3O4 NPs in the Co3O4@N-rGO composite were around 22 and 24 nm, respectively with an interlayer distance of 0.21 nm, as calculated using the XRD patterns. The Co3O4@N-rGO electrode exhibits superior capacitive performance with a high capability of about 450 F g?1 at a current density of 1 A g?1 and has excellent cyclic stability, even after 1000 cycles of GCD at a current density of 4 A g?1. The obtained N-GDs exhibited high sensitivity and selectivity towards Fe2+ and Fe3+, the limit of detection was as low as 1.1 and 1.0 μM, respectively, representing high sensitivity to Fe2+ and Fe3+. Besides, the N-GDs was applied for bio-imaging. We found that N-GDs were suitable candidates for differential staining applications in yeast cells with good cell permeability and localization with negligible cytotoxicity. Hence, N-GDs may find dual utility as probes for the detection of cellular pools of metal ions (Fe3+/Fe2+) and also for early detection of opportunistic yeast infections in biological samples.  相似文献   

11.
《Ceramics International》2016,42(4):5397-5402
Lithium (Li)-rich layered oxides are considered promising cathode materials for Li-ion batteries because of their favorable properties. Here, we report our recent finding in the novel oxide, aluminum fluoride (AlF3)-modified Li1.2Mn0.54Ni0.13Co0.13O2 (LMNCAF), which was synthesized via a facile, cost-effective and readily scalable solid-state reaction. LMNCAF possess an F and Al co-doped core structure with a LiF nano-coating on its surface which leads to considerably enhancement in the electrochemical performance of the oxide. The initial discharge capacity (at 0.05 C) increased from 212 mA h g−1 for Li1.2Mn0.54Ni0.13Co0.13O2 to 291 mA h g−1 for LMNCAF. A much higher discharge capacity of 211 mA h g−1 was obtained for LMNCAF after 99 charge/discharge cycles at 0.2 C compared with that of Li1.2Mn0.54Ni0.13Co0.13O2 (160 mA h g−1). Our preliminary results suggest that AlF3 modification is an effective strategy to tailor the physicochemical and electrochemical properties of Li-rich layered oxides.  相似文献   

12.
Surface-interface reaction between the electrode and electrolyte plays a key role in lithium-ion storage properties, especially for high voltage cathode such as LiCoPO4 and Ni-riched cathode. Generally, surface modification is an effective method to improve the electrochemical performance of electrode materials. Herein, in order to revise the LiCoPO4 cathode with desirable properties, uniform AlF3-modified LiCoPO4 (LiCoPO4@AlF3) cathode materials in nano-sized distribution are synthesized. XRD result indicates that there is no structural transformation observed after AlF3 coating. TEM characterization and XPS analysis reveal that the surface of LiCoPO4 particle is coated by a nano-sized uniform AlF3 layer. Further, the electrochemical results indicate that AlF3 layer significantly improves the cycling and rate performances of LiCoPO4 cathode within the voltage range of 3.0–5.0 V. After a series of optimization, 4 mol% AlF3-coated LiCoPO4 material exhibits the best properties including an initial discharge capacity of 159 mA h g?1 at 0.1 C with 91% capacity retention after 50 cycles, especially a discharge capacity of 90 mA h g?1 can be obtained at 1 C rate. CV curves indicate that the polarization of cathode is reduced by AlF3 layer and EIS curves reveal that AlF3 layer relieves the increase of resistance to facilitate Li-ion transfer at the interface between electrode and electrolyte during the cycling process. The enhanced electrochemical performances are attributed to that the AlF3 layer can stabilize the interface between the cathode and electrolyte, form steady SEI film and suppress the electrolyte continuous decomposition at 5 V high voltages. This feasible strategy and novel characteristics of LiCoPO4@AlF3 could promise the prospective applications in the stat-art of special lithium-ion battery with high energy and/or power density.  相似文献   

13.
《Ceramics International》2016,42(13):14818-14825
Poor rate capability and cycling performance are the major barriers for Li-rich layered cathode materials to be applied as the next generation cathode materials for lithium-ion batteries. In our work, Li1.2Co0.4Mn0.4O2 has been successfully synthesized via a self-combustion reaction (SCR) and a calcination procedure. Compared with the material produced by the solid state method (SSM), the one by SCR exhibits both better rate capability and cycling performance. Its initial discharge capacity is 166.01 mA h g−1 with the capacity retention of 85.98% after 50 cycles at a current density of 200 mA h g−1. Its remarkable performance is attributed to a thin carbon coating layer, which not only slows down the transformation rate of layered to spinel structure, but provides a good electronic pathway to increase the Li+ diffusion coefficient.  相似文献   

14.
Reduced graphene oxide (rGO) tethered with maghemite (γ-Fe2O3) was synthesized using a novel modified sol–gel process, where sodium dodecylbenzenesulfonate was introduced into the suspension to prevent the undesirable formation of an iron oxide 3D network. Thus, nearly monodispersed and homogeneously distributed γ-Fe2O3 magnetic nanoparticles could be obtained on surface of graphene sheets. The utilized thermal treatment process did not require a reducing agent for reduction of graphene oxide. The morphology and structure of the composites were investigated using various characterization techniques. As-prepared rGO/Fe2O3 composites were utilized as anodes for half lithium ion cells. The 40 wt.%-rGO/Fe2O3 composite exhibited high reversible capacity of 690 mA h g−1 at current density of 500 mA g−1 and good stability for over 100 cycles, in contrast with that of the pure-Fe2O3 nanoparticles which demonstrated rapid degradation to 224 mA h g−1 after 50 cycles. Furthermore, the composite showed good rate capability of 280 mA h g−1 at 10C (∼10,000 mA g−1). These characteristics could be mainly attributed to both the use of an effective binder, poly(acrylic acid) (PAA), and the specific hybrid structures that prevent agglomeration of nanoparticles and provide buffering spaces needed for volume changes of nanoparticles during insertion/extraction of Li ions.  相似文献   

15.
《Ceramics International》2017,43(13):10326-10332
To improve the performance of anatase TiO2 as an anode material for sodium-ion batteries, Zn2+-doped TiO2/C composites are synthesized by a co-precipitation method. The results of XRD, EPR and XPS demonstrate that Zn2+ occupies at the Ti4+ site of TiO2 to form a solid-solution, resulting in an expansion of lattice and an increase of Ti3+ content. The expansion of lattice can enhance the stability of the crystal structure of TiO2. The increase of Ti3+ content can improve the conductivity of TiO2. Therefore, Ti0.94Zn0.06O2/C delivers a reversible capacity of 160 mA h g−1 with a capacity retention of 96% after 100 cycles at 5 C. Even charged/discharged at 10 C, this sample still exhibits a reversible capacity of 117 mA h g−1, comparing to 86 mA h g−1 for TiO2/C. The enhanced electrochemical performances can be ascribed to the improvement of the conductivity and the structural stability of TiO2 due to Zn2+-doping. Therefore, Ti0.94Zn0.06O2/C is an attractive anode material of sodium-ion batteries.  相似文献   

16.
《Ceramics International》2017,43(13):9945-9950
Co3O4, as a promising anode material for the next generation lithium ion batteries to replace graphite, displays high theoretical capacity (890 mAh g−1) and excellent electrochemical properties. However, the drawbacks of its poor cycle performance caused by large volume changes during charge-discharge process and low initial coulombic efficiency due to large irreversible reaction impede its practical application. Herein, we have developed a porous hollow Co3O4 microfiber with 500 nm diameter and 60 nm wall thickness synthesized via a facile chemical precipitation method with subsequent thermal decomposition. As an advanced anode for lithium ion batteries, the porous hollow Co3O4 microfibers deliver an obviously enhanced electrochemical property in terms of lithium storage capacity (1177.4 mA h g−1 at 100 mA g−1), initial coulombic efficiency (82.9%) and cycle performance (76.6% capacity retention at 200th cycle). This enhancement could be attributed to the well-designed microstructure of porous hollow Co3O4 microfibers, which could increase the contact surface area between electrolyte and active materials and accommodate the volume variations via additional void space during cycling.  相似文献   

17.
In order to increase the energy density of supercapacitor, a new kind electrode material with excellent structure and outstanding electrochemical performance is highly desired. In this article, a new type of three-dimensional (3D) nitrogen-doped single-wall carbon nanotubes (SWNTs)/graphene elastic sponge (TRGN?CNTs?S) with low density of 0.8 mg cm?3 has been successfully prepared by pyrolyzing SWNTs and GO coated commercial polyurethane (PU) sponge. In addition, high performance electrode of the honeycomb-like NiCo2O4@Ni(OH)2/TRGN-CNTs-S with core-shell structure has been successfully fabricated through hydrothermal method and then by annealing treatment and electrochemical deposition method, respectively. Benefited from 3D structural feature, the compressed NiCo2O4@Ni(OH)2/TRGN-CNTs-S electrode exhibits high gravimetric and volumetric capacitance of 1810 F g?1, 847.7 F cm?3 at 1 A g?1. The high rate performance and long-term stability was also obtained. Furthermore, an asymmetric supercapacitor using NiCo2O4@Ni(OH)2/TRGN-CNTs-S cathode and NGN/CNTs anode delivered high gravimetric and volumetric energy density of 54 W h kg?1 at 799.9 W kg?1 and 37 W h L?1 at 561.5 W L?1. In summary, an excellent electrochemical electrode with new elastic 3D SWNTs/graphene supports and binder free pseudocapacitive materials was introduced.  相似文献   

18.
Precursor of nanocrystalline Co0.35Mn0.65Fe2O4 was synthesized by solid-state reaction at low heat using CoSO4·7H2O, MnSO4·H2O, FeSO4·7H2O, and Na2C2O4 as raw materials. Nanocrystalline Co0.35Mn0.65Fe2O4 with spinel structure was obtained via calcining the precursor. The precursor and its calcined products were characterized using TG/DSC, FT-IR, XRD, SEM, EDS, and vibrating sample magnetometer. The results showed that the precursor dried at 353 K was a mixture consisted of CoC2O4·2H2O, MnC2O4·2H2O, and FeC2O4·2H2O. However, when the precursor was calcined at 623 K for 2 h, highly crystallization Co0.35Mn0.65Fe2O4 [space group R-3 m (166)] was obtained with a crystallite size of 22 nm. Magnetic characterization indicated that the specific saturation magnetization of Co0.35Mn0.65Fe2O4 obtained at 773 K was 66.14 Am2/kg. The thermal process of precursor experienced two steps, which involves the dehydration of the waters of crystallization at first, and then decomposition of Co0.35Mn0.65Fe2(C2O4)3 and formation of crystalline Co0.35Mn0.65Fe2O4 together. Based on the Kissinger equation, the values of the activation energy associated with the thermal processes of the precursor were determined to be 78 and 146 kJ/mol for the first and second thermal process steps, respectively.  相似文献   

19.
《Ceramics International》2016,42(16):18173-18180
It is essential to develop new electrode materials for electrochemical energy storage to meet the increasing energy demands, reduce environmental pollution and develop low-carbon economy. In this work, binder-free NiCo2S4 nanorod arrays (NCS NRAs) on nickel foam electrodes are prepared by an easy and low energy-consuming route. The electrodes exhibit superior electrochemical properties both for alkaline and Li-ion batteries. In 3 M KOH electrolyte, the NCS NRAs achieve a specific capacity of 240.5 mA h g−1 at a current density of 0.2 A g−1, and 105.7 mA h g−1 after 1500 cycles at the current density of 5 A g−1 with capacity retention of 87.3%. As the anode for LIBs, it shows a high initial capacity of 1760.7 mA h g−1 at the current density of 100 mA g−1, corresponding coulombic efficiency of 87.6%, and a rate capacity of 945 mA h g−1 when the current density is improved 10 times. Hence, the NiCo2S4 nanorod arrays are promised as electrode materials with competitive performance.  相似文献   

20.
《Ceramics International》2017,43(15):11848-11854
LiNi0.5Co0.2Mn0.3O2 (523) coated with ~ 20 nm thick Y2O3 nano-membrane is prepared via a sol-type chemical precipitation process based on electrostatic attraction between the materials. The nano-Y2O3-coated 523 cathode can deliver 160.3 mA h g−1 (87.8% of its initial discharge capacity) after 50 cycles at 1 C (180 mA g−1) between 3.0 and 4.6 V by coin cell testing, while the pristine 523 keeps only 146.2 mA h g−1 with 78.6% capacity retention left. The capacity retention rate increases from 50% to 86.7% after 150 cycles at 1 C in 3.0–4.35 V by soft package testing under 45 °C. Through this novel Y2O3 coating operation, both the charge transfer resistance and the electrode polarization of the 523 electrode have been suppressed, and its structure stability is also improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号