首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Lead-free (Bi0.5Na0.5)TiO3 (BNT)-based piezoelectric materials, have a great potential for high-precision actuators’ applications. In this work, the high-quality (0.94-x%)(Bi0.5Na0.5)TiO3-0.06BaTiO3-x%NaNbO3 (x = 2–10, BNT-6BT-xNN) thin films have been successfully deposited on Pt/TiO2/SiO2/Si substrates by sol-gel method. An ultra-high poling strain Spol value of 1.7% with a unipolar strain Suni value of 1.47% was reported in the BNT-6BT-6NN thin films. The coexistence of the ferroelectric phase and relaxor state was observed in the compositions of x = 2–8. Furthermore, the BNT-6BT-6NN thin films show more active domain switching compared to other compositions. It is demonstrated that the optimized strain responses in the BNT-6BT-6NN are attributed to a synergistic reaction of active domain switching and reversible electric-field-induced phase transition between the ferroelectric phase and relaxor state. Our systematic study demonstrates that the BNT-6BT-xNN thin films with an improved strain response are promising candidates for the applications of miniaturized actuators.  相似文献   

2.
SrTiO3-modified lead-free piezoelectric ceramics, (0.93-x)Bi0.5Na0.5TiO3-xSrTiO3-0.06BaTiO3-0.01 K0.5Na0.5NbO3 [(BNT-xST)-BT-KNN, x = 0-0.06], were prepared using a conventional solid-state reaction method. The XRD structure analysis and electric properties characteristics revealed the ST-induced phase transformation from the ferroelectric phase to the relaxor phase and their coexistence state. Benefiting from the ST-destructed ferroelectric long-range orders, the high normalized strain value of 600 pm/V was obtained in the (BNT-0.02ST)-BT-KNN ceramic at 5 kV/mm. The ST-generated relaxor phase was found to have a constructive effect on improving the temperature stability and restraining the hysteresis of the electric-field-induced strain. The normalized strain of (BNT-0.06ST)-BT-KNN ceramics could be kept at a high value ~337 pm/V at elevated temperature up to 120°C.  相似文献   

3.
《Ceramics International》2019,45(13):16022-16027
0.8(Bi0.5,Na0.5)TiO3-0.2SrTiO3 (BNT-0.2ST) thin films, with thicknesses ranging from 90 to 364 nm, were fabricated on platinized silicon substrates by sol-gel method. These films were investigated by switching spectroscopy piezoresponse force microscope (SS-PFM) as a function of frequency at room temperature, revealing the enhanced ferroelectric response in ∼ 210 nm film at all frequencies (0.1 Hz - 1.5 Hz). This enhancement was ascribed to the largest thermally-activated stress at such thicknesses generated during film fabrications. As the temperature of the investigated films increases from room temperature to 200 oC, the piezoelectric parameters were obtained from SS-PFM, such as switching polarization (Rs), coercive bias (V0), work of switching (As), maximum strain (Smax), and negative strain (Sneg), indicating an occurrence of phase transition from ferroelectrics to relaxors. This work revealed that thickness plays a crucial role for ferroelectric response and temperature-dependent phase transition in BNT-0.2ST films, since it affects the stress state and switching behavior.  相似文献   

4.
Ferroelectric materials under shock compression can generate current and power by a drastic change of the remnant polarizations and surface bound charge. This behavior has been employed in applications involving nuclear fusion trigger, energy storage devices, and high pulse power sources. Despite the large power output in lead-containing ferroelectrics, lead-free materials are highly desirable owing to the environmental concerns. Herein, the phase transition behaviors and current outputs of 0.92Bi0.5Na0.5TiO3-0.08BiAlO3 (BNT-8BA) materials are studied under high pressure. The BNT-8BA ferroelectric ceramics can be completely depolarized from polar to the nonpolar state under shock compression, resulting in a current output in the external circuit. The phase-transition-induced depolarization pressures of BNT-8BA are lower than those of the pure Bi0.5Na0.5TiO3 under both dynamic and static high-pressure loads. These results can allow the understanding of the high-pressure behavior of BNT-8BA for application as ferroelectric pulsed power supply.  相似文献   

5.
In order to obtain a new system of (Bi1/2Na1/2)TiO3 (BNT) based lead-free incipient piezoceramics with large strain for practical applications of actuators, we investigated the effect of B-site complex-ion (Fe0.5Nb0.5)4+ (FN)-doped Bi1/2 (Na0.82K0.12)1/2TiO3 ceramics on the phase structure, dielectric, ferroelectric, piezoelectric and electric-field-induced strain properties. All samples exhibited single perovskite phase with pseudocubic symmetry. The room temperature electric-field-induced polarization (P-E) and strain (S-E) hysteresis loops indirectly illustrated ferroelectric-to-relaxor (FE-RE) phase transition. The increasing content of FN doping decreased the FE-RE phase transition temperature, TF-R to below room temperature and induced the reversible FE-RE phase transition, giving rise to a large strain of 0.462% with a normalized strain, d*33 of 660 pm/V at a critical composition of x = 5. A fluctuation of the dielectric curve for BNKT-5 mol% FN ceramics in the spectra around 80 °C before and after polarization suggested that the large strain response can be induced via delicate mixing of the FE and RE phase.  相似文献   

6.
《Ceramics International》2023,49(6):9615-9621
Bi0.5Na0.5TiO3 (BNT) lead-free ceramics have been extensively studied due to their excellent dielectric, piezoelectric and ferroelectric properties. The phase structure and functionalities of BNT can be feasibly adjusted by doping/forming solid solutions with other elements/components. In this work, Bi(Mg2/3Nb1/3)O3 (BMN) was introduced into BNT by a conventional solid-state reaction to form a homogeneous solid solution of (1-x)(Bi0.5Na0.5)TiO3-xBi(Mg2/3Nb1/3)O3 (BNT-xBMN) with a perovskite structure. With the increase of BMN content, a phase transition from rhombohedral R3c to tetragonal P4bm has been confirmed by XRD, along with shifting the ferroelectric-paraelectric phase transition temperature to lower temperatures with broadening dielectric peaks. Furthermore, an optimized recoverable energy density of 1.405 J/cm3 was achieved for BNT-0.10BMN ceramics under a low applied electric field of 140 kV/cm, which is mainly attributed to the transformation from ferroelectric to ergodic relaxor phase.  相似文献   

7.
《Ceramics International》2021,47(21):30399-30405
In this work, (0.64-x)Bi0.5Na0.5TiO3- 0.36Sr0.7Bi0.2TiO3- x(K0.5La0.5)(Ti0.9Zr0.1)O3 lead-free piezoceramics were designed and fabricated by a conventional solid-phase sintering process. It is found that large strains (0.33 %), low hysteresis coefficients (32 %), and large dynamic d33* (367 p.m./V) were obtained at x = 0.01. The large strain originates from the reversible transition of the relaxor to the long-range ferroelectric order in the electric field. When the ferroelectric and relaxor phases coexist in a proper ratio, they can provide a favorable condition for the easier movement of the domains and improve the strain properties. In addition, after 105 cycles, the bipolar strain loop of x = 0.01 content changed slightly, demonstrating excellent fatigue resistance. This work provides a new way to design piezoelectric ceramics with large strain and low hysteresis.  相似文献   

8.
Novel (1–x)(0.94Bi0.5Na0.5TiO3–0.06BaTiO3)–xSr0.7La0.2TiO3 ternary lead-free ceramics (BNBT–xSL, x?=?0.00–0.08) were fabricated by the widely used solid-state sintering technique. The crystal phase, microstructure, dielectric relaxation, piezoelectric, and electromechanical properties of each composition were systematically analyzed. It is found that the addition of SL has little effect on the crystal phase and grain morphology, but it can remarkably improved the relaxation property of the ceramic sample and gave rise to favourable dielectric properties in a wide range of temperatures. In addition, as the SL content increases, the ferroelectric to relaxor temperature (TF-R) is adjusted to below ambient temperature. More importantly, the decay of ferroelectric phase resulted in a significant increase in strain value: the large strain of 0.5% with normalized strain of 625?pm/V was obtained at 80kv/cm and x?=?0.04. Finally, the composition exhibited high strain of temperature insensitivity range from room temperature to 100?°C, the strain value remained above 0.4% and kept within 5%. The results are due to the coexistence of rhombohedral polar-nanoregions (PNRs) and tetragonal PNRs during the relaxor region. This result is of great importance to the developments of temperature-insensitive strain sensors and actuators.  相似文献   

9.
In this work, 0.2 wt.% Mn-doped (1-x)AgNbO3-xBi0.5Na0.5TiO3 (x = 0.00–0.04) ceramics were synthesized via solid state reaction method in flowing oxygen. The evolution of microstructure, phase transition and energy storage properties were investigated to evaluate the potential as high energy storage capacitors. Relaxor ferroelectric Bi0.5Na0.5TiO3 was introduced to stabilize the antiferroelectric state through modulating the M1-M2 phase transition. Enhanced energy storage performance was achieved for the 3 mol% Bi0.5Na0.5TiO3 doped AgNbO3 ceramic with high recoverable energy density of 3.4 J/cm3 and energy efficiency of 62% under an applied field of 220 kV/cm. The improved energy storage performance can be attributed to the stabilized antiferroelectricity and decreased electrical hysteresis ΔE. In addition, the ceramics also displayed excellent thermal stability with low energy density variation (<6%) over a wide temperature range of 20−80 °C. These results indicate that Mn-doped (1-x)AgNbO3-xBi0.5Na0.5TiO3 ceramics are highly efficient lead-free antiferroelectric materials for potential application in high energy storage capacitors.  相似文献   

10.
A route exploring the morphotropic phase boundaries (MPB) region in (Bi.5Na.5)TiO3-BaTiO3-(Bi.5K.5)TiO3 ternary system has been designed based on the phase diagram. X-ray diffraction (XRD) has been performed to determine the phases of the prepared samples. The dielectric, ferroelectric, and piezoelectric properties of [(1-x) 0.9363(Bi.5Na.5)TiO3–0.0637BaTiO3]-x(Bi.5K.5)TiO3 (BNKBT100x) ternary lead-free piezoelectric ceramics are investigated as the functions of x and sintering temperature. When x was varied from 0 to 0.11, the BNKBT100x ceramics show single perovskite structure sintered at 1130–1210?°C. These ceramics show large dielectric permittivity, small dielectric loss, and diffused phase transition behavior. Well-defined ferroelectric polarization-electric field (P-E) hysteresis loop and relative large piezoelectric and electromechanical coefficients are also found in these ceramics. When increasing x, the electrical performances first increase, then decrease. The same rule is found when varying the sintering temperature. The optimized composition and sintering temperature are finally obtained.  相似文献   

11.
Recently developed Bi0.5Na0.5TiO3(BNT)-based piezoceramics face two urgent obstacles: high driving field required to trigger large strain and poor temperature stability. Highly oriented (1-x)(0.83Bi0.5Na0.5TiO3-0.17Bi0.5K0.5TiO3)-xNaNbO3 (BNT-BKT-xNN) piezoceramics were synthesized using NN templates to resolve both obstacles. Measurements of polarization and strain hysteresis loops as well as phase transition temperature revealed a phase evolution from ergodic relaxor to ferroelectric phases, generating a high strain of 0.43% and large Smax/Emax = 720pm/V for textured BNT-BKT-4NN ceramics. The field-dependent strain was largely depended on the degree of texturing. Most intriguingly, grain-oriented specimens provided excellent actuating performance characterized by both large Smax/Emax = 693 pm/V at a low driving field of 45 kV/cm and enhanced temperature stability with Smax/Emax = 537pm/V at 120 °C. This was basically ascribed to the facilitated switching between ergodic relaxor and ferroelectric phases owing to the grain-oriented structure. As a consequence, design of <00l> oriented microstructure opens the possibility to produce efficient BNT-based piezoceramics for transferral into real-world applications.  相似文献   

12.
In this work, the (1-x)(0.8Na0.5Bi0.5TiO3-0.2K0.5Bi0.5TiO3)-xSrTiO3 (NKBT-xST) incipient piezoelectric ceramics with x = 0–0.07 (0ST-7ST) were prepared by the solid-state reaction method and their structural transformation and electromechanical properties were investigated as a function of ST content. As the ST content increases, the long-range ferroelectric order is disrupted, and the ferroelectric-relaxor phase transition temperature (TFR) shifts to around room temperature for NKBT-5ST ceramics, accompanied by a relatively high electrostrain of 0.3% at 6 kV/mm. The large strain response associated with the vanished ferroelectric properties around TFR can be attributed to the reversible relaxor-ferroelectric phase transition. The electric-field-temperature (E-T) phase diagrams were established, and the transition between the two field-induced long-range ferroelectric states were found to take place via a two-step switching process through an intermediate relaxor state. The threshold electric field to trigger the conversion between ferroelectric state and relaxor state depends strongly on the dynamics of polarization relaxation, which is influenced by temperature and composition.  相似文献   

13.
This article studies the microstructure and piezoelectric properties of a ceramic lead-free NBT under different amount of ZnO doping. X-ray diffraction shows that Zn2+ diffuses into the lattice of (Bi0.5Na0.5)TiO3 to form a solid solution with a pure perovskite structure. By modifying the zinc oxide content, the sintering behavior of (Bi0.5Na0.5)TiO3 ceramics was significantly improved and the grain size was increased. The piezoelectric coefficient d33 for the 1.0 wt.% ZnO-doped (Bi0.5Na0.5)TiO3 ceramics sintered at 1050 °C was found to be 95 pC/N, and the electromechanical coupling factor kp = 0.13. However, the piezoelectric coefficient d33 for the 0.5 wt.% ZnO-doped (Bi0.5Na0.5)TiO3 ceramics sintered at 1140 °C was found to be 110 pC/N, and the electromechanical coupling factor kp = 0.17.  相似文献   

14.
《Ceramics International》2019,45(6):7173-7179
The large electric-field-induced strain of Bi0.5Na0.5TiO3-BaTiO3 based ceramic make it a potential replacement for lead-based ferroelectrics in actuator applications. Herein, a ternary system (1-x)(Bi0.5Na0.5)0.935Ba0.065TiO3-xSr2MnSbO6 (BNBT6.5-xSMS) ceramic was fabricated using conventional solid-state reaction. It was found that the ferroelectric to relaxor phase transition temperature TF-R gradually shifted to lower temperature by increasing SMS contents. The ferroelectricity and piezoelectricity of BNBT6.5 were highly affected by trace amount of SMS doping. For composition BNBT6.5-0.003SMS, where TF-R was near room temperature, a large electric-field-induced unipolar strain of ~0.4% with high normalized strain (Smax/Emax) of 728 pm/V, which is comparable to lead-based ferroelectric/antiferroelectric ceramics, was achieved owing to the reversible electric-field-induced phase transition between a non-polar relaxor phase to a polar phase with long-range ferroelectric order.  相似文献   

15.
《Ceramics International》2021,47(18):25296-25303
Na0.5Bi0.5TiO3-based solid solutions are one of the most promising lead-free piezoelectric candidates since they can be easily tailored to exhibit large electrostrain. However, the large hysteresis and temperature-dependence of the electrostrain response are longstanding obstacles for their practical applications. In the present study, 0–3 type composites were developed with 0.97(0.94Na0.5Bi0.5TiO3-0.06BaTiO3)-0.03AgNbO3 (NBT-6BT-3AN) matrix phase and ZnO inclusions. The optimum addition of 5 wt.% ZnO in the composites leads to reduction in hysteresis of electrostrain by 35% in comparison with pure NBT-6BT-3AN at room temperature. Meanwhile, electrostrain of the composites maintains superior temperature stability, with a variance of less than ±10% in the temperature range between 25 and 125 °C. The reason for the improvement of electrostrain is proposed to be attributed to the ergodic/nonergodic mixture phases induced by residual stress between the inclusion and matrix, as well as the phase evolution caused by the incorporation of Zn2+ into the matrix. Therefore, this work provides a new strategy to improve the electromechanical properties of Na0.5Bi0.5TiO3-based ceramics.  相似文献   

16.
《Ceramics International》2019,45(15):18623-18631
Environment-friendly lead-free piezoceramics with high strain response and extremely excellent stability in a wide operating temperature range are critically important in practical actuator applications. Here, we develop a new strategy to tune the electrostrictive strain behavior in Bi0.5Na0.5TiO3 (BNT)-based ceramics via using high aspect ratio BaTiO3 nanowires (BT NWs) as a modifier. The addition of BT NWs generates a crossover from a typical ferroelectric (BT conventional spherical particles) to a complete ergodic relaxor (ER) phase at ambient temperature, accompanied by a large electrostrictive strain of ∼0.17% with d33*(Smax/Emax) = 284 pm/V. Such a high electrostrictive strain is extremely thermally stable with only <7% fluctuation from 27 °C to 120 °C. In addition, the BT NWs-modified ceramics also exhibit acceptable fatigue endurance (<30% up to 105 cycles) and frequency dependence (<20% at 10Hz–100Hz). These achieved exceptional performances can be ascribed to the BT NWs-driven complete ER phase at room temperature. The findings of this study can inspire enhanced interest in nanowires as a viable modifier to BNT-based materials due to promising potential for practical actuator applications in a wide temperature range.  相似文献   

17.
The use of lead-free piezoelectric materials in high-power applications requires a high mechanical quality factor Qm and temperature-stable ferroelectric properties. In this article, the influence of Mg-doping on the 0.94Na1/2Bi1/2TiO3-0.06BaTiO3 system is analysed with focus on the role of defects related to ferroelectric hardening. Temperature stability (depolarization temperature), electromechanical properties (piezoelectric activity, Qm), electrical properties (conductivity) and crystal structure for compositions were quantified. Compositions with similar amount of Zn-doping were analyzed for reference. A drastic increase in electrical conductivity at ?0.3/?0.5 mol% Mg was associated with a concomitant increase in Qm. Similar behavior in Zn-doped compositions provides a basis for a more comprehensive mechanistic understanding of acceptor doping in these lead-free piezoceramics. The very high and almost vibration-velocity-independent Qm above 800 makes Mg-doped 0.94Na1/2Bi1/2TiO3-0.06BaTiO3 an excellent candidate for high-power application.  相似文献   

18.
(1-x)(Bi0.5Na0.5)0.94Ba0.06TiO3-xAgNbO3 lead-free piezoelectric ceramics (abbreviated as BNBT-100xAN) were prepared using the conventional solid-state sintering method. The effects of the introduction of AgNbO3 (AN) dopants for the dielectric and piezoelectric performances of BNBT-100xAN ceramics were systematically studied. The XRD patterns and Raman spectra demonstrated that AN as a modifier was successfully diffused into the BNBT-100xAN lattice and revealed a pseudo-cubic symmetry structure. All samples exhibited a dense surface morphology accompanied by the uniform distribution of elements. A large bipolar strain of ~0.501% and unipolar strain of ~0.481% corresponding to the normalized strain d33* of ~740 p.m./V were achieved for BNBT-1AN ceramic at 65 kV/cm field. The BNBT-4AN ceramic exhibited an excellent temperature-stable permittivity with the range from 59 to 380 °C and its dielectric loss was less than 0.02 between 97 °C and 329 °C. These results revealed that BNBT-100xAN ceramics were more hopeful candidates for actuators, strain sensors, and high-temperature capacitors.  相似文献   

19.
(1-x)[0.8Bi0.5Na0.5TiO3-0.2Bi0.5K0.5TiO3]-xBi(Mn0.5Ti0.5)O3 (x = 0–0.06, BNKMT100x) lead-free ferroelectric ceramics were prepared via solid state reaction method. Bi(Mn0.5Ti0.5)O3 induces a structure transition from rhombohedral-tetragonal morphotropic phases to pseudo-cubic phase. Moreover, the wide range of compositions within x = 0.03–0.055 exhibit large strain of 0.31%–0.41% and electrostrictive coefficient of 0.027–0.041 m4/C2. Especially, at x = 0.04, the large strain and electrostrictive coefficient are nearly temperature-independent in the range of 25–100 °C. The impedance analysis shows the large strain and electrostrictive coefficient originate from polar nanoregions response due to the addition of Bi(Mn0.5Ti0.5)O3.  相似文献   

20.
Lead‐free 0.985[(0.94?x)Bi0.5Na0.5TiO3–0.06BaTiO3xSrTiO3]–0.015LiNbO3 [(BNT–BT–xST)–LN, x=0‐0.05] piezoelectric ceramics were prepared using a conventional solid‐state reaction method. It was found that the long‐range ferroelectric order in the unmodified (BNT–BT)–LN ceramic was disrupted and transformed into the ergodic relaxor phase with the ST substitution, which was well demonstrated by the dramatic decrease in remnant polarization (Pr), coercive field (Ec), negative strain (Sneg) and piezoelectric coefficient (d33). However, the degradation of the ferroelectric and piezoelectric properties was accompanied by a significant increase in the usable strain response. The critical composition (BNT–BT–0.03ST)–LN exhibited a maximum unipolar strain of ~0.44% and corresponding normalized strain, Smax/Emax of ~880 pm/V under a moderate field of 50 kV/cm at room temperature. This giant strain was associated with the coexistence of the ferroelectric and ergodic relaxor phases, which should be mainly attributed to the reversible electric‐field‐induced transition between the ergodic relaxor and ferroelectric phases. Furthermore, the large field‐induced strain showed relatively good temperature stability; the Smax/Emax was as high as ~490 pm/V even at 120°C. These findings indicated that the (BNT–BT–xST)–LN system would be a suitable environmental‐friendly candidate for actuator applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号