首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent years, spinel lithium titanate (Li4Ti5O12) as a superior anode material for energy storage battery has attracted a great deal of attention because of the excellent Li-ion insertion and extraction reversibility. However, the high-rate characteristics of this material should be improved if it is used as an active material in large batteries. One effective way to achieve this is to prepare electrode materials coated with carbon. A Li4Ti5O12/polyacene (PAS) composite were first prepared via an in situ carbonization of phenol-formaldehyde (PF) resin route to form carbon-based composite. The SEM showed that the Li4Ti5O12 particles in the composite were more rounded and smaller than the pristine one. The PAS was uniformly dispersed between the Li4Ti5O12 particles, which improved the electrical contact between the corresponding Li4Ti5O12 particles, and hence the electronic conductivity of composite material. The electronic conductivity of Li4Ti5O12/PAS composite is 10−1 S cm−1, which is much higher than 10−9 S cm−1 of the pristine Li4Ti5O12. High specific capacity, especially better high-rate performance was achieved with this Li4Ti5O12/PAS electrode material. The initial specific capacity of the sample is 144 mAh/g at 3 C, and it is still 126.2 mAh/g after 200 cycles. By increasing the current density, the sample still maintains excellent cycle performance.  相似文献   

2.
Li4Ti4.9V0.1O12 nanometric powders were synthesized via a facile solid-state reaction method under inert atmosphere. XRD analyses demonstrated that the V-ions successfully entered the structure of cubic spinel-type Li4Ti5O12 (LTO), reduced the lattice parameter and no impurities appeared. Compared with the pristine LTO, the electronic conductivity of Li4Ti4.9V0.1O12 powders is as high as 2.9 × 10−1 S cm−1, which should be attributed to the transformation of some Ti3+ from Ti4+ induced by the efficient V-ions doping and the deficient oxygen condition. Meanwhile, the results of XPS and EDS further proved the coexistence of V5+ and Ti3+ ions. This mixed Ti4+/Ti3+ ions can remarkably improve its cycle stability at high discharge–charge rates because of the enhancement of the electronic conductivity. The images of SEM showed that Li4Ti4.9V0.1O12 powders have smaller particles and narrower particle size distribution under 330 nm. And EIS indicates that Li4Ti4.9V0.1O12 has a faster lithium-ion diffusivity than LTO. Between 1.0 and 2.5 V, the electrochemical performance, especially at high rates, is excellent. The discharge capacities are as high as 166 mAh g−1 at 0.5C and 117.3 mAh g−1 at 5C. At the rate of 2C, it exhibits a long-term cyclability, retaining over 97.9% of its initial discharge capacity beyond 1713 cycles. These outstanding electrochemical performances should be ascribed to its nanometric particle size and high conductivity (both electron and lithium ion). Therefore, the as-prepared material is promising for such extensive applications as plug-in hybrid electric vehicles and electric vehicles.  相似文献   

3.
Hierarchical layered hydrous lithium titanate and Li4Ti5O12 microspheres assembled by nanosheets have been successfully synthesized via a hydrothermal process and subsequent thermal treatment. The electrochemical properties of the two samples have been investigated by galvanostatic methods. The former, with the obvious layered structure and a large surface area, delivers a reversible capacity of 180 mA h g−1 after 200 cycles at 200 mA g−1. As for Li4Ti5O12, with the intriguing and unique sawtooth-like morphology, it presents exceptional high rate performance and excellent cycling stability. Up to 132 mA h g−1 is obtained after 200 cycles at 10,000 mA g−1 (57 C), proving itself promising for high-rate applications.  相似文献   

4.
Porous (P-) and dense (D-) lithium titanate (Li4Ti5O12) powders as an anode material for lithium-ion batteries have been synthesized by spray drying followed by solid-state calcination. Electrochemical testing results showed that the discharge capacities of P-Li4Ti5O12 are 144 mAh/g, 128 mAh/g and 73 mAh/g at the discharging rate of 2C, 5C and 20C, respectively (cut-off voltages: 0.5-2.5 V). The corresponding values for D-Li4Ti5O12 are 108 mAh/g, 25 mAh/g and 17 mAh/g. The higher capacity of the P-Li4Ti5O12 at high charge/discharge rates was attributed to the shorter transport path of Li ions and higher electronic conductivity in the P-Li4Ti5O12 as a result of its smaller primary particle size and higher surface area compared with those of the D-Li4Ti5O12.  相似文献   

5.
Yan Liu 《Electrochimica acta》2008,53(5):2507-2513
Co3O4 microspheres were synthesized in mass production by a simple hydrothermal treatment. One micrometer-sized spherical particles with well-crystallization could be obtained by XRD and SEM. Higher specific surface area (93.4 m2 g−1) and larger pore volume (78.4 cm3 g−1) by BET measurements offered more interfacial bondings for extra sites of Li+ insertion, which resulted in the anomalous large initial irreversible capacity and capacity cycling loss due to SEI film formation. The capacity retention of Co3O4 microspheres involved first forming acted as Li-ion anode material is almost above 90% from 12th cycle and it retain lithium storage capacity of 550.2 mAh g−1 after 25 cycles, which show good long-life stability. The electrochemical impedance spectroscopy (EIS) tests before and after cyclic voltammetry measurements and charge-discharge experiments were carried out and the corresponding DLi values were also calculated. The relationship of the ac impedance spectra and the cycling behaviors was discussed. It is found that the decrease of capacity results from the larger Li+ charge-transfer impedance and the lower lithium-diffusion processes on cycling, which is in very good agreement with the electrochemical behaviors of Co3O4 electrode.  相似文献   

6.
Nano-sized Li4Ti5O12 powders with high dispersivity were fabricated by a sol-gel process using P123 as surfactant, which exhibited much better high rate performance towards Li+ insertion/extraction as compared to the densely aggregated Li4Ti5O12 particles although the primary grain sizes of both samples were almost the same. The Li4Ti5O12 electrode prepared from the well-dispersed nanopowders can preserve 88.6% of the capacity at 0.1 A g−1 when being cycled at 1 A g−1, which is obviously higher than that of the densely aggregated sample, in which only 30% capacity can be retained. By improving the dispersivity, the specific surface area of the Li4Ti5O12 nanoparticles, hence the electrode-electrolyte contact area was increased; meanwhile, more homogeneous mixing of the active materials with carbon black was achieved. All these factors might have resulted in the better high rate performance.  相似文献   

7.
Three dimensionally ordered macroporous (3DOM) Li4Ti5O12 membrane (80 μm thick) was prepared by a colloidal crystal templating process. Colloidal crystal consisting of monodisperse polystyrene particles (1 μm diameter) was used as the template for the preparation of macroporous Li4Ti5O12. A precursor sol consisting of titanium isopropoxide and lithium acetate was impregnated into the void space of template, and it was calcined at various temperatures. A macroporous membrane of Li4Ti5O12 with inverse-opal structure was successfully prepared at 800 °C. The interconnected pores with uniform size (0.8 μm) were clearly observed on the entire part of membrane. The electrochemical properties of the three dimensionally ordered Li4Ti5O12 were characterized with cyclic voltammetry and galvanostatic charge and discharge in an organic electrolyte containing a lithium salt. The 3DOM Li4Ti5O12 exhibited a discharge capacity of 160 mA h g−1 at the electrode potential of 1.55 V versus Li/Li+ due to the solid state redox of Ti3+/4+ accompanying with Li+ ion insertion and extraction. The discharge capacity was close to the theoretical capacity (167 mA h g−1), which suggested that the Li+ ion insertion and extraction took place at the entire part of 3DOM Li4Ti5O12 membrane. The 3DOM Li4Ti5O12 electrode showed good cycle stability.  相似文献   

8.
A novel cathode material, lithium decavanadate Li6V10O28 with a large tunnel within the framework structure for lithium ion battery has been prepared by hydrothermal synthesis and annealing dehydration treatment. The structure and electrochemical properties of the sample have been investigated. The novel material shows good reversibility for Li+ insertion/extraction and long cycle life. High discharge capacity (132 mAh/g) is obtained at 0.2 mA/cm2 discharge current and potential range between 2.0 and 4.2 V versus Li+/Li. AC impedance of the Li/Li6V10O28 cell reveals that the cathode process is controlled mainly by Li+ diffusion in the active material. The novel material would be a promising cathode material for Li-ion batteries.  相似文献   

9.
The cubic ZnFe2O4 with the spinel structure is prepared by the urea combustion method. Powder X-ray diffraction and HR-TEM studies confirm the single-phase nature with particle size in the range, 100-300 nm. A stable and reversible capacity, 615(±10) mAh g−1 (5.5 moles of Li per mole of ZnFe2O4) when cycled in the range, 0.005-3.0 V vs. Li at a current of 60 mA g−1(0.1C) has been achieved between 15 and 50 cycles. The underlying reaction mechanism contributing to the observed capacity is the combination of ‘de-alloying-alloying’ and ‘conversion’ reactions of ‘LiZn-Fe-Li2O composite’. Ex situ HR-TEM and SAED data on the charged-electrode confirmed the proposed reaction mechanism.  相似文献   

10.
Herein we describe electrochemical and spectroscopic properties of lithium titanate spinel as well as an easy method based on colorimetry to determine the lithium content of electrodes containing lithium titanate spinel as active material. Raman microspectrometry measurements have been performed to follow lithium insertion into and extraction from the active material, respectively. The Raman signals display a pronounced fading of intensity already at low levels of lithium intercalation and disappear at a SOC higher than ∼10%. However, the colorimetric method can be used up to a SOC of 50%.  相似文献   

11.
A Li4Ti5O12/carbon/carbon nano-tubes (Li4Ti5O12/C/CNTs) composite was synthesized by using a solid-state method. For comparison, a Li4Ti5O12/carbon (Li4Ti5O12/C) composite and a pristine Li4Ti5O12 were also synthesized in the present study. The microstructure and morphology of the prepared samples are characterized by XRD and SEM. Electrochemical properties of the samples are evaluated by using galvanostatic discharge/charge tests and AC impedance spectroscopy. The results reveal that the Li4Ti5O12/C/CNTs composite exhibits the best rate capability and cycling stability among the samples of Li4Ti5O12, Li4Ti5O12/C and Li4Ti5O12/C/CNTs. At the charge-discharge rate of 0.5 C, 5.0 C and 10.0 C, its discharge capacities were 163 mAh/g, 148 mAh/g and 143 mAh/g, respectively. After 100 cycles at 5.0 C, it remained at 146 mAh/g.  相似文献   

12.
Li4Ti5O12/carbon nano-tubes (CNTs) composite was prepared by sol-gel method while Ti(OC4H9)4, LiCH3COO·2H2O and the n-heptane containing CNTs were used as raw materials. The characters of Li4Ti5O12/CNTs composite were determined by XRD, SEM, and TG methods. Its electrochemical properties were measured by charge-discharge cycling and impedance tests. It was found that the prepared Li4Ti5O12/CNTs presented an excellent rate capability and capacity retention. At the charge-discharge rate of 5C and 10C, its discharge capacities were 145 and 135 mAh g−1, respectively. After 500 cycles at 5C, the discharge capacity retained as 142 mAh g−1. It even could be cycled at the rate of 20C. The excellent electrochemical performance of Li4Ti5O12/CNTs electrode could be attributed to the improvement of electronic conductivity by adding conducting CNTs and the nano-size of Li4Ti5O12 particles in the Li4Ti5O12/CNTs composite.  相似文献   

13.
Li2ZnTi3O8 fibers are synthesized by thermally treating electrospun Zn(CH3COO)2/LiOAc/TBT/PVP fibers and utilized as an energy storage material for rechargeable lithium-ion batteries. The material is characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and thermal analysis. Scanning electron microscopy results show that the Li2ZnTi3O8 fibers have an average diameter of 200 nm. Electrochemical properties of the material are evaluated using cyclic voltammetry, galvanostatic cycling and electrochemical impedance spectroscopy. The results show that as-prepared Li2ZnTi3O8 has a high specific discharge capacity of 227.6 mAh g−1 at the 2nd cycle. Its electrochemical performance at subsequent cycles shows good cycling capacity and rate capability. The obtained results thus strongly support that the electrospinning method is an effective method to prepare Li2ZnTi3O8 anode material with higher capacity and rate capability.  相似文献   

14.
Ti3C2, the most widely studied MXene, was successfully synthesised by etching Al layers from Ti3AlC2 in HF solution. Given its distinct 2D layered structure, Ti3C2 is a promising anode material in Li-ion batteries because of its efficient ion transport, available large surface areas for improved ion adsorption and fast surface redox reactions. Herein, the effects of synthesis temperature on the phase structure, morphology and electrochemical performance were investigated. The materials synthesised at different temperatures were characterised by using X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Optimal etching occurred at 100?°C, and the synthesised Ti3C2 exhibited smooth surface and large layer space. The synthesised Ti3C2, as anode material for Li-ion batteries, can accommodate more Li+ than those of others, and it exhibits the most ideal electrochemical performance.  相似文献   

15.
An original carbothermal synthesis of ramsdellites phases under specific atmosphere (Ar, Ar/H2, N2, N2/H2) allowed creating in situ composites which showed good electrochemical properties as negative active materials of Li-ion batteries. The combination of chemical, XRD and electrochemical analyses enabled to identify the as-formed composite electrodes. It consists in ramsdellite/spinel for the synthesis under Ar/H2, TiO2 ramsdellite/Li2TiO3 for the synthesis under N2/H2, and LixTi3O7/LixTi3O7 for the samples prepared under both N2 and Ar. Carbon is partially inserted inside channels of titanate structure for the sample obtained under Ar/H2. For the first time, one of these composites allowed reaching a specific capacity close to the theoretical value of 198 mAh g−1.  相似文献   

16.
We report here a polymer-templated hydrothermal growth method and subsequent calcination to achieve carbon coated hollow CuFe2O4 spheres (H–CuFe2O4@C). This material, when used as anode for Li-ion battery, retains a high specific capacity of 550 mAh g−1 even after the 70th cycle, which is much higher than those of both CuFe2O4@C (∼300 mAh g−1) and H–CuFe2O4 (∼120 mAh g−1). And galvanostatic cycling at different current densities reveals that a capacity of 480 mAh g−1, 91% recovery of the specific capacity cycling at 100 mA g−1, can be obtained even after 50 cycles running from 100 to 1600 mA g−1. The significantly enhanced electrochemical performances of H–CuFe2O4@C with regard to Li-ion storage are ascribed to the following factors: (1) the hollow void, which could mitigate the pulverization of electrode and facilitate the lithium-ion, electron and electrolyte transport; (2) the conductive carbon coating, which could enhance the conductivity, alleviate the agglomeration problem, prevent the formation of an overly thick SEI film and buffer the electrode. Such a structural motif of H–CuFe2O4@C is promising, for electrode materials of LIBs, and points out a general strategy for creating other hollow-shell electrode materials with improved electrochemical performances.  相似文献   

17.
The aim of this work was to compare the electrochemical behaviors and safety performance of graphite and the lithium titanate spinel Li1.33Ti1.67O4 with half-cells versus Li metal. Their electrochemical properties in 1 M LiPF6/EC + DEC (1:1 w/w) or 1 M LiPF6/PC + DEC (1:1 w/w) at room and elevated temperatures (30 and 60 °C) have been studied using galvanostatic cycling. At 30 °C graphite has higher reversible capacity than Li1.33Ti1.67O4 when using the LiPF6/EC + DEC as electrolyte. At 60 °C graphite declines in cell capacity yet Li1.33Ti1.67O4 remains almost unchanged. In a propylene carbonate (PC) containing electrolyte, graphite electrode exfoliates and loses its mechanical integrity while Li1.33Ti1.67O4 electrode is very stable. An accelerating rate calorimeter (ARC) and microcalorimeter have been used to compare the thermal stability of lithiated lithium titanate spinel and graphite. Results show that Li1.33Ti1.67O4 may be used as an alternative anode material offering good battery performance and higher safety.  相似文献   

18.
A robust strategy has been developed to fabricate Na2Li2Ti6O14@Li0.33La0.56TiO3 composites as promising anode materials for lithium-ion battery. Li0.33La0.56TiO3 modification does not change the basic structure of Na2Li2Ti6O14 but enhances the lattice parameter because few trivalent lanthanum ions enter the crystal lattice of Na2Li2Ti6O14. All samples show similar morphology with a narrow size distribution ranged from 100 to 500?nm. HRTEM test demonstrates that a good conductive connection between the Na2Li2Ti6O14 and Li0.33La0.56TiO3 layer is successfully formed. The electrochemical tests show that Na2Li2Ti6O14@Li0.33La0.56TiO3 (5?wt%) sample exhibits the lowest charge-transfer resistance, highest reversibility of lithium insertion/extraction, and the largest Li-ion diffusion coefficient among all samples, and then shows the best electrochemical activity. Hence, the Na2Li2Ti6O14@Li0.33La0.56TiO3 (5?wt%) electrode reveals the largest lithiation and delithiation capacities at each current density. The Na2Li2Ti6O14@Li0.33La0.56TiO3 (5?wt%) shows excellent cycling stability with a delithiation capacity of 166.8?mAh?g?1 at 500?mA?g?1 after 100 cycles. However, the corresponding delithiation capacity of pristine Na2Li2Ti6O14 is only 136.9?mAh?g?1 after 100 cycles. Li.33La.56TiO3 modification is a direct and powerful design method to enhance the delithiation and lithiation capacities and cycling stability of Na2Li2Ti6O14.  相似文献   

19.
Yan Liu 《Electrochimica acta》2009,54(17):4180-2671
A simple approach to synthesize Co3O4 in mass production by using hexamethylenetetramine (HMT, C6H12N4) as a precipitator via hydrothermal treatment has been developed. The samples were calcinated at different temperatures ranging from 300 to 600 °C and characterized by XRD and SEM. The structure became agglomerative and collapsed with an increase in calcination temperature. Evaluation of the electrochemical performance in combination with SEM and BET analysis suggests that there is an optimum calcination temperature for Co3O4. It is found that the retention capacity of well crystallized Co3O4 hollow microspheres has a higher specific surface area at 300 °C and is almost above 94% after the 5th cycle at different current densities of 40 and 60 mA g−1, which shows good long-life stability and favorable electrochemical behaviors. Using EIS analysis, we demonstrated that lithium-ion conduction inside the SEI layers and charge transfer at the electrode/electrolyte interface became hindered with an increased calcination temperature, which was in good agreement with the electrochemical behaviors of three Co3O4 electrodes. It is proposed that drastic capacity fading and the variation of resistive components (SEI layers and charge transfer) can be influenced by morphologies due to the calcination temperature.  相似文献   

20.
《Ceramics International》2017,43(3):3252-3258
In this study, we report a facile strategy for anchoring Li4Ti5O12 (LTO) particles wrapped within carbon shells onto graphene nanosheet (GNS) using the freeze-drying assisted microwave irradiation method. In this designed structure, a conductive three-dimensional network can be formed by connecting the GNS and carbon layer which is benefit for the transport of electron and Li+-ion. When used as anode material for lithium-ion batteries, this hybrid composite exhibits an excellent high-rate performance with specific capacities of 171.5, 168.2, 160.1, 151.7 and 136.4 mAh g−1 at various current rates of 1, 2, 5, 10 and 20 C, respectively. Furthermore, the specific capacity of the obtained anode still retains 99.6% of the initial value after 20 cycles at 20 C. The enhanced battery performance can be attributed to the improved electronic conductivity of each LTO grain via uniform carbon coating and GNS wrapping. As a consequence, this novel strategy developed in this study may open a new way to fabricate other electrodes for advanced renewable energy conversion and storage applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号