首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unlike the air-water interface, the organic-aqueous (liquid-liquid) interface has not been exploited sufficiently for materials synthesis. In this Account, we demonstrate how ultrathin nanocrystalline films of metals such as gold and silver as well as of inorganic materials such as semiconducting metal chalcogenides (e.g., CdS, CuS, CdSe) and oxides are readily generated at the liquid-liquid interface. What is particularly noteworthy is that single-crystalline films of certain metal chalcogenides are also obtained by this method. The as-prepared gold films at the toluene-water interface comprise fairly monodisperse nanocrystals that are closely packed, the nature and properties of the films being influenced by various reaction parameters such as reaction temperature, time, reactant concentrations, mechanical vibrations, and the viscosity of the medium. The surface plasmon band of gold is markedly red-shifted in the films due to electronic coupling between the particles. The shift of the surface plasmon band of the Au film toward higher wavelengths with an accompanying increase in intensity as a function of reaction time marks the growth of the film. Depending on the reaction temperature, the Au films show interesting electrical transport properties. Films of metals such as gold are disintegrated by the addition of alkanethiols, the effectiveness depending on the alkane chain length, clearly evidenced by shifts of the surface plasmon bands. A time evolution study of the polycrystalline Au and CdS films as well as the single-crystalline CuS films is carried out by employing atomic force microscopy. X-ray reflectivity studies reveal the formation of a monolayer of capped clusters having 13 gold atoms each, arranged in a hexagonal manner at the toluene-water interface. The measurements also reveal an extremely small value of the interfacial tension. Besides describing features of such nanocrystalline films and their mode of formation, their rheological properties have been examined. Interfacial rheological studies show that the nanocrystalline film of Ag nanoparticles, the single-crystalline CuS film, and the multilayered CdS film exhibit a viscoelastic behavior strongly reminiscent of soft-glassy systems. Though both CuS and CdS films exhibit a finite yield stress under steady shear, the CdS films are found to rupture at high shear rates. An important advantage of the study of materials formed at the liquid-liquid interface is that it provides a means to investigate the interface itself. In addition, it enables one to obtain substrate-free single-crystalline films of materials.  相似文献   

2.
《Ceramics International》2022,48(3):3720-3728
In this paper, a stable lithium niobate (LN) sol was prepared using niobium pentachloride, niobium ethoxide, lithium acetate, anhydrous ethanol, and benzoylacetone (BzAcH) as a chemical modifier. The effects of different starting materials and organic solvents on the obtained gel film quality of the sols were studied and the optimization mechanism of BzAcH on the film quality was analyzed in detail. The effects of heat treatment temperature on the structure and performance of the LN thin films were also studied. X-ray diffraction (XRD) spectra showed that LN was more highly crystalline in the heat treatment temperature range of 600–800 °C. The refractive index of the LN thin films first increased and then decreased with increasing heat treatment temperature, and the LN thin film prepared at 700 °C had the largest refractive index. Light transmittance tests showed that as the heat treatment temperature increased, light transmittance decreased. Finally, it was determined that LN gel films modified with BzAcH were more highly sensitive to UV light and that after UV irradiation, it was difficult to dissolve LN gel films in organic solvent. The UV-sensitive property was utilized to realize microstructure processing of the LN thin films. The results indicated that a high-quality, non-destructive, and photoresist-free micro-fabrication method was realized. This method was used to fabricate microscale LN fine patterns with smooth sidewalls while avoiding lateral corrosion. These results are of great significance for LN thin film applications and the development of LN-based optoelectronic devices prepared by chemical methods.  相似文献   

3.
Molecular mechanisms and precursor conversion pathways associated with the reactions that generate colloidal nanocrystals are crucial for the development of rational synthetic protocols. In this study, Fourier transform infrared spectroscopy technique was employed to explore the molecular mechanism associated with the formation of tin-doped indium oxide (ITO) nanocrystals. We found that the reaction pathways of the indium precursor were not consistent with simple ligand replacements proposed in the literature. The resulting understanding inspired us to design a hot-injection approach to separate the ligand replacements of indium acetate and the aminolysis processes, generating quality ITO nanocrystals with decent size distributions. The hot-injection approach was readily applied to the synthesis of ITO nanocrystals with a broad range of tin doping. Structural, chemical, and optical analyses revealed effective doping of Sn4+ ions into the host lattices, leading to characteristic and tunable near-infrared surface plasmon resonance peaks. The size control of ITO nanocrystals by multiple hot-injections of metal precursors was also demonstrated.  相似文献   

4.
Cadmium sulfide (CdS) and silver sulfide (Ag2S) nanocrystals are deposited on the titanium dioxide (TiO2) nanocrystalline film on indium tin oxide (ITO) substrate to prepare CdS/Ag2S/TiO2/ITO photoelectrodes through a new method known as the molecular precursor decomposition method. The Ag2S is interposed between the TiO2 nanocrystal film and CdS nanocrystals as an energy barrier layer and a light absorber. As a consequence, the energy conversion efficiency of the CdS/Ag2S/TiO2/ITO electrodes is significantly improved. Under AM 1.5 G sunlight irradiation, the maximum efficiency achieved for the CdS(4)/Ag2S/TiO2/ITO electrode is 3.46%, corresponding to an increase of about 150% as compared to the CdS(4)/TiO2/ITO electrode without the Ag2S layer. Our experimental results show that the improved efficiency is mainly due to the formation of Ag2S layer that may increase the light absorbance and reduce the recombination of photogenerated electrons with redox ions from the electrolyte.  相似文献   

5.
The effect of nanocrystals with preferred orientation on the thermal conductivity of carbon films is studied. During graphitization, the presence of biaxial compressive stress results in the formation of preferred orientation in the microstructure of graphitic nanocrystals if the corresponding activation energy is supplied. This formation of preferred orientation leads to the orientation of graphitic basal planes perpendicular to the substrate. Due to the high thermal conductivity of graphite in the basal planes, there is a significant increase in thermal conductivity of textured nanocrystalline films compared to amorphous film.  相似文献   

6.
We report an electrophoretic deposition method for the fabrication of gold nanoparticle (GNP) thin films as sensitive surface-enhanced Raman scattering (SERS) substrates. In this method, GNP sol, synthesized by a seed-mediated growth approach, and indium tin oxide (ITO) glass substrates were utilized as an electrophoretic solution and electrodes, respectively. From the scanning electron microscopy analysis, we found that the density of GNPs deposited on ITO glass substrates increases with prolonged electrophoresis time. The films possess high mechanical adhesion strength and exhibit strong localized surface plasmon resonance (LSPR) effect by showing high SERS sensitivity to detect 1 × 10−7 M rhodamine 6 G in methanol solution. Finally, the relationship between Raman signal amplification capability and GNP deposition density has been further investigated. The results of our experiment indicate that the high-density GNP film shows relatively higher signal amplification capability due to the strong LSPR effect in narrow gap regions between the neighboring particles on the film.  相似文献   

7.
《Ceramics International》2021,47(22):31442-31450
ITO/Ag/ITO multilayer thin films have been a potential substitute of the conventional single-layer transparent conducting film. Nevertheless, the mechanical stability under preparation and in-service conditions still limits their applications and developments. In this paper, the influences of different structural properties as well as layer structure on both surface morphological properties and mechanical properties of the ITO/Ag/ITO multilayer thin films in comparison with commercial single-layer ITO thin film were systematically investigated. The results demonstrate that, i) the tri-layer composite has large impacts on the preferential orientation, and exhibits the decreased values of surface roughness, net lattice distortion and residual stress; ii) the increased hardness (H) and decreased Young's modulus (E) for full annealed ITO/Ag/ITO multilayer films indicate that it is possible to tailor mechanical properties of the materials by manufacturing multilayer composite; iii) the ITO/Ag/ITO multilayer thin film exhibits remarkable improvements in wear resistance with the increase of annealing temperature, which is mainly attributed to the increased ratios of H/E and H3/E2.  相似文献   

8.
ITO是锡掺杂氧化铟薄膜的简称,属于透明导电氧化物材料。常规沉积方法制备的ITO薄膜通常为非晶态或体心立方晶系晶体,为n型半导体材料,其载流子为自由电子,主要来源于沉积过程中薄膜化学计量比偏离或阳离子掺杂形成的施主杂质。ITO薄膜是当前研究和使用最为广泛的透明导电氧化物薄膜材料,由于具有低电阻率、高可见光透过率、高红外反射率等独特物理特性而被大量应用于平板显示器、太阳能电池、发光二极管、气体传感器、飞机风挡玻璃除霜器等领域。此外,ITO薄膜对微波还具有高达85%的衰减作用,因而在电磁屏蔽等军用领域显示出巨大的潜在应用价值。过去几十年里,针对ITO薄膜的研究工作主要聚焦于薄膜的光电性能上。当前,伴随着ITO薄膜的应用范围在航空航天和军用武器装备等领域的拓展,ITO薄膜在恶劣力学环境中的使用日渐增多。因此,除光电性能外,ITO薄膜的力学性能也开始受到研究者越来越多的关注,人们对薄膜器件在各类恶劣使用环境中的稳定性及耐久性提出了更高的要求,这一要求使得对ITO薄膜力学性能的深入研究分析有了重要的理论及实际意义。本文综述了近年来ITO薄膜在微结构特性、能带结构、光电性能及力学性能等方面的研究进展,简略探讨了ITO薄膜的研究发展方向。  相似文献   

9.
透明导电氧化物薄膜的研究现状及展望   总被引:9,自引:0,他引:9  
综述了TCO薄膜的研究现状,ITO和ZAO薄膜是2种主要的TCO薄膜,其中ITO薄膜是目前应用最广泛的薄膜,ZAO薄膜是目前研究的热点,具有替代ITO的潜能。另外,就透明导电膜目前存在的问题以及发展展望进行了分析讨论。  相似文献   

10.
Nickel-doped nanocrystalline ZnO with three different Ni concentrations was incorporated in polyvinylidene fluoride thin film for obtaining free-standing flexible film by sol-gel technique. The effect of Ni–ZnO loading on the optical and microstructural properties of the Ni–ZnO/polyvinylidene fluoride composite films was studied. X-ray photoelectron spectroscopy and Raman studies were performed to characterize the bonding environment. Fluorine-terminated surface showed a strong F1?s peak located at ~695?eV arising out of C–F bonds. Existence of β phase of polyvinylidene fluoride along with the presence of ZnO nanocrystals were indicated by Raman studies. Secondary ion mass spectrometry studies indicated the distribution of Ni–ZnO particles in the polyvinylidene fluoride matrix.  相似文献   

11.
This paper is a review of our work on nanocrystalline semiconductor films which exhibit pronounced size quantization effects in three dimensions, manifested by large blue-shifts in their optical absorption spectra. The films are prepared by either chemical solution deposition (CdSe and PbSe) or by electrodeposition from nonaqueous electrolytes (CdSe and CdS). Except for PbSe, where the nanocrystals are surrounded by a matrix, the films are comprised of aggregated nanocrystals. Crystal size (typically from <4 nm to >6 nm), and therefore absorption spectra, can be controlled by deposition temperature, illumination during deposition (for chemically deposited films), solution composition, and post annealing. The crystal size dependence of chemically-deposited films on experimental parameters (temperature, illumination, reactant concentrations) is discussed. CdSe nanocrystals were epitaxially electrodeposited on single-crystal Au. The nanocrystal distribution (isolated or aggregated) could be controlled by deposition current and temperature. All these films exhibit photoelectrochemical behavior but no corresponding solid state photovoltaic behavior. A model is proposed based on electron/hole separation by kinetic differences in charge injection into an electrolyte rather than by a built-in space charge layer in the semiconductor. The films can behave as both ‘n’ - or ‘p’-type, with respect to direction of photocurrent flow, by changes in the semiconductor surface properties and/or the electrolyte, in agreement with this model.  相似文献   

12.
Ru-doped nanostructured carbon films   总被引:1,自引:0,他引:1  
Pure and Ru-doped carbon films are deposited on Si (100) substrates by electron cyclotron resonance chemical vapor deposition. The films are characterized by transmission electron microscopy, electron energy loss spectroscopy, energy dispersive X-ray spectroscopy and atomic force microscopy. In both the pure and Ru-doped samples, diamond nanocrystallites are formed in amorphous carbon matrices. The Ru-doped film contains much smaller diamond nanocrystallites (approx. 3 nm) than the pure samples (approx. 11 nm). Lower surface roughnesses are observed in both pure and Ru-doped samples as compared to other reported nanocrystalline diamond films. The conductivity of the Ru-doped film is significantly higher than that of the pure film. The results show that Ru-doped nanocrystalline diamond films have unique structures and properties as compared to pure nanocrystalline diamond films or metal doped diamond-like carbon films, which may offer advantages for electrochemical, optical-window, field emission or tribological applications.  相似文献   

13.
以10%SnO2和90%In2O3(以质量计)烧结成的ITO氧化物陶瓷为靶材,采用射频磁控溅射法在玻璃基片成功地制备出光电性能优异的ITO透明导电薄膜。研究了基片温度和氧分压溅射工艺参数对ITO薄膜的结构和光电性能的影响。实验结果表明,采用氧化铟锡陶瓷靶射频磁控溅射制备的ITO薄膜沿(222)晶面生长,薄膜紫外透射光谱的吸收截止边带随着衬底温度和氧分压的升高向短波长方向漂移。  相似文献   

14.
A series of Au–TiO2/ITO films with nanocrystaline structure was prepared by a procedure of photo-deposition and subsequent dip-coating. The Au–TiO2/ITO films were characterized by X-ray diffraction, scanning electronic microscopy, electron diffraction, X-ray photoelectron spectroscopy, and UV–VIS diffuse reflectance spectroscopy to examine the surface structure, chemical composition, the chemical state of metal, and the light absorption properties. The photocatalytic activity of the Au–TiO2/ITO films was evaluated in the photocatalytic (PC) and photoelectrocatalytic (PEC) degradation of bisphenol A (BPA) in aqueous solution. Compared with a TiO2/ITO film, the degree of BPA degradation using the Au–TiO2/ITO films was significantly higher in both the PC and PEC processes. The enhancement is attributed to the action of Au deposits on the TiO2 surface, which play a key role by attracting conduction band photoelectrons. In the PEC process, the anodic bias externally applied on the illuminated Au–TiO2/ITO film can further drive away the accumulated photoelectrons from the metal deposits and promote a process of interfacial charge transfer.  相似文献   

15.
Dense TiO2 and TiO2/CdSe coupled nanocrystalline thin films were synthesized onto ITO coated glass substrate by chemical route at relatively low temperature (≤100 °C). TiO2 films were nanocrystalline and crystallinity disappears after CdSe deposition as evidenced by X-ray powder diffraction. Surface morphology and physical appearance of films were studied from SEM and actual photo-images, reveals dense nature of TiO2 (10-12 nm spherical grains, faint violet) and CdSe (80-90 nm spherical grains, deep brown), respectively. Presence of two absorption edges in UV spectra implies existence of separate phases rather than composite formation. TiO2 film was found to have higher water contact angle (71°) than TiO2/CdSe (61°) and CdSe (56°). I-V and stability tests of photo-electrochemical cells were performed with TiO2 and TiO2/CdSe film electrodes (under light of illumination intensity 80 mW/cm2) in lithium iodide as an electrolyte using two-electrode system.  相似文献   

16.
In this paper, we present fabrication of a nano-composite Prussian Blue (NPB) film to synchronously improve the contrast and switching time of regular Prussian Blue (PB) film by applying the concept of nano-technology. The NPB consists of indium tin oxide (ITO) nano-particles (3.0 ± 1.0 Ω, 40 ± 5 nm) as a medium layer for PB to gain larger operative reaction surface area in Li+ based electrolyte (1 M LiClO4/PC) system. The procedures for preparation of NPB are: first, a well-dispersed ITO nano-particle solution is sprayed onto ITO glass (30 Ω/sq) at 200 °C; the PB film is then electroplated onto the pre-sprayed ITO nano-particles. Since ITO nano-particles can be well covered with PB, the NPB film forms a nano-porous electrochromic layer. The switching speed and contrast of NPB exhibit much better performances than traditional PB thin films. The structure, morphology, and electrochromic properties were characterized by scanning electron microscopy (SEM), cyclic voltammograms (CV), and UV-vis spectroscopy.  相似文献   

17.
合成了三种酰胺化纳米晶纤维素,并采用溶液共混成膜法制备了酰胺化纳米晶纤维素(CNC)/乙烯醋酸乙烯醋共聚物(EVA)复合膜材料。通过紫外-可见分光光度计、电子万能试验机和透湿仪研究了酰胺化CNC/ EVA复合膜的光学性能、力学性能以及水蒸气阻隔性,并通过原子力显微镜研究热压处理的EVA复合膜的表面形貌。结果表明,添加三种不同碳链的酰胺化CNC都使 EVA膜的透光率有所降低,当添加量为5 %时,EVA膜透光率仍高达90%。一定程度的热压能够让酰胺化纳米晶纤维素在EVA基体中分散更均匀,使EVA复合膜的透光率提高了2%~3%;随着纳米晶纤维素含量的逐渐增加,三种酰胺化CNC/EVA膜的拉伸强度均逐渐增强,透湿率(WVTR值)均减小;酰胺化CNC含量相同时, 十六胺改性的纳米晶纤维素(CNC-N16)/EVA复合膜的力学性能和水蒸气阻隔效果优于相应的十二胺和正辛胺。  相似文献   

18.
Ultrathin silicon films were deposited on nanocrystalline diamonds by means of atomic layer deposition (ALD) from gaseous monosilane. The silicon deposition was achieved through the sequential reaction of SiH4 saturated adsorption and in-site pyrogenation. X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution electron microscopy (HREM) and Fourier transform infrared (FTIR) spectra were utilized to investigate the structure and the morphology of Si-coated nanocrystalline diamonds. The results confirmed that continuous silicon films were successfully deposited on both basal planes and edges of nanocrystalline diamond particles by this ALD method and the structure of the film was mainly determined by deposition temperature and deposition cycle.  相似文献   

19.
In this paper, the synthesis of mesoporous Mo-doped titania films templated by cellulose nanocrystals (CNCs) and their photocatalytic performance are reported for the first time. The prepared titania composite precursors containing the CNCs and molybdenum chloride were spin-coated on indium tin oxide (ITO) glass substrate, followed by calcining at 400?°C for 1?h. X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), scanning electron microscope (SEM), and UV–vis spectrometer were employed to characterize the phase composition, pore structure, morphology, and optical property of the titania films in relation to CNCs templating and Mo doping. Photocatalytic performances of the titania films were also evaluated on the photodegradation of trichloroethylene under a fluorescent light source. The Mo-doped titania films with CNCs templating were highly transparent and mesoporous, exhibiting only anatase phase, high specific surface areas ranging in 135.4 – 149.0?m2/g, and small crystallite sizes of 9.5 – 11.1?nm. The results indicate that Mo ions were successfully doped by substituting for Ti ions in the titania lattice. The Mo doping stabilized the anatase phase and also increased the surface area of the CNCs-templated titania film while decreasing the mean pore width. Notably, the visible light absorption capacity and photocatalytic activity of the CNCs-templated titania films doped with Mo were dramatically greater than those of the pure and the CNCs-templated titania films, which is ascribed to the decreased recombination rate of photoexcited charges and the increased surface area with aids of the CNCs templating and the Mo doping.  相似文献   

20.
纳米Ag-TiO2/ITO光催化膜的制备、表征及光催化活性的研究   总被引:4,自引:1,他引:3  
舒东  何春  郭海福 《精细化工》2004,21(6):421-424
用直接光还原法将Ag+沉积到TiO2膜表面制备了纳米Ag TiO2/ITO光催化膜,该光催化膜分别用紫外可见光漫反射、X射线衍射、扫描电镜进行了表征;并以甲酸为模型化合物,研究了Ag TiO2/ITO光催化膜对有机污染物的光催化氧化降解。实验结果表明:沉积于TiO2膜表面的银是以Ag(0)形式存在,且Ag可以作为光生电子载体,对抑制光生电子-空穴的复合有明显的促进作用,但Ag TiO2/ITO膜的光催化活性与Ag的沉积量密切相关,其中以Ag沉积质量分数为1 1%的Ag TiO2/ITO膜的光催化活性最佳,其光催化氧化甲酸的速率常数约为TiO2/ITO膜光催化速率常数的2 2倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号