首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2016,42(11):12807-12814
Vertically aligned ZnO nanorods (ZNRs) arrays with various aspect ratios were deposited by using a simple and inexpensive hydrothermal route at relatively low temperature of 90 °C. The influence of hydroxide anion generating agents in the solution on the growth of ZNRs arrays was studied. Hexamethylenetetramine (HMTA) and ammonia were used as hydroxide anion generating agents while polyethyleneimine (PEI) as structure directing agent. The combined effect of these three agents plays a crucial role in the growth of ZNRs arrays with respect to their rod length and diameter, which controls the aspect ratio. The deposited ZNRs exhibited hexagonal wurtize crystal structure with preferred orientation along (002) plane. The highly crystalline nature and pure phase formation of ZNRs was confirmed from FT-Raman studies. The maximum gas response (Rg/Ra) of 67.5 was observed for high aspect ratio ZNRs, deposited with combination of HMTA, ammonia as well as PEI. The enhancement in gas response can be attributed to high surface area (45 cm2/g) and desirable surface accessibility in high aspect ratio ZNRs. Fast response–recovery characteristics, especially a much quicker gas response time of 32 s and recovery time of 530 s were observed at 100 ppm NO2 gas concentration.  相似文献   

2.
《Ceramics International》2015,41(6):7729-7734
We report bead-like ZnO nanostructures for gas sensing applications, synthesized using multi-walled carbon nanotube (MWCNT) templates. The ZnO nanostructures are grown following a two-step process: in the first, ZnO nanoparticles are synthesized on MWCNTs by thermal evaporation of a Zn powder; and in the second, the hybrid nanostructures are heat-treated at 800 °C. Scanning and transmission electron microscopy images indicate that the bead-like ZnO nanostructures have surface protuberances with nanoparticle sizes ranging from 20 to 60 nm, and a well-crystallized hexagonal structure. Gas sensors based on multiple-networked bead-like ZnO showed considerably enhanced electrical responses and better stability to both oxidizing (NO2) and reducing (CO) gases compared with previously reported nanostructured gas sensors, even if the response to CO gas was slow to increase. Both the NO2 and CO gas sensing properties increased dramatically when the working temperature was increased up to 300 °C. The response sensitivities measured were 2953%, 5079%, 9641%, 3568%, and 3777% to 20 ppm NO2 at 200, 250, 300, 350 and 400 °C, respectively. For CO gas on the other hand, the response sensitivities were 107%, 110%, 114%, 118%, and 122% at 5, 10, 20, 50, and 100 ppm concentrations, respectively. For concentrations between 5 and 20 ppm, the recovery time of the oxidizing gas was much shorter than the response time. The origin of the NO2/CO gas sensing mechanism of the bead-like ZnO nanostructures is discussed.  相似文献   

3.
《Ceramics International》2017,43(9):6765-6770
Herein, we report the simple synthesis, characterization and acetone gas sensing applications of Ag-doped ZnO nanoneedles prepared by facile hydrothermal method. The synthesized nanoneedles were characterized through different characterization techniques to examine its crystallinity, phase structure, morphological, compositional, optical, vibrational and gas sensing properties. The detailed morphological studies revealed that the Ag-doped ZnO nanoneedles are assembled into non-homogeneously distributed flower-shaped structures which are grown in high density. Further characterizations confirmed that the synthesized nanoneedles are pure, possessing well-crystallinity and exhibiting good optical and vibrational properties. The synthesized Ag-doped ZnO nanoneedles were used as functional material to fabricate high sensitive acetone gas sensors. The effect of operating temperature and concentration of the acetone were analyzed for detailed sensing performance of synthesized nanoneedles. By detailed sensing experiments, the response and recovery times of 10 s and 21 s, respectively were calculated at acetone concentration of 100 ppm at an optimized operating temperature of 370 °C. A maximum sensitivity of 30.233 was recorded at 370 °C operating temperature for 200 ppm of acetone for the fabricated acetone sensor based on Ag-doped ZnO nanoneedles.  相似文献   

4.
《Ceramics International》2017,43(10):7508-7515
A novel hierarchical heterostructure consisting of porous NiO nanosheets and flower-like ZnO assembled by hexagonal nanorods was successfully fabricated by a simple two-step hydrothermal approach. Flower-like ZnO was obtained by the first step hydrothermal method. Through the second step hydrothermal method, porous NiO nanosheets grew on the surface of flower-like ZnO to realize integration of ZnO and NiO, so the p-n heterostructure between ZnO and NiO formed. The samples were investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and energy dispersive X-ray (EDX). Gas sensing test results showed that the sensor based on NiO/ZnO composite exhibited superior sensing properties to acetone. The sensor response to 100 ppm acetone was about 205.14 at the optimum working temperature of 240 °C, and the response and recovery times were about 7 and 20 s, respectively. The enhanced response might be attributed to heterojunction and larger specific surface area provided by attached porous NiO nanosheets. The rapid response and recovery characteristics and improved selectivity attributed to the porous structure and good catalytic actions of NiO nanosheets.  相似文献   

5.
《Ceramics International》2016,42(14):15889-15896
Well-defined three-dimensional (3D) hierarchical tin dioxide (SnO2) nanoflowers with the size of about 200 nm were successfully synthesized by a simple template-free hydrothermal method. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and N2 adsorption-desorption analyses were used to characterize the structure and morphology of the products. The as-synthesized full crystalline and large specific surface area SnO2 nanoflowers were assembled by one-dimensional (1D) SnO2 nanorods with sharp tips. A possible self-assembly mechanism for the formation the SnO2 nanoflowers was speculated. Moreover, gas sensing investigation showed the sensor based on SnO2 nanoflowers to exhibit high response and fast response-recovery ability to detect acetone and ethanol at an operating temperature lower than 200 °C. The enhancement of gas sensing properties was attributed to their 3D hierarchical nanostructure, large specific surface area, and small size of the secondary SnO2 nanorods.  相似文献   

6.
Porous ZnO nanosheets were synthesized by thermal evaporation. The morphology, crystal structure, and sensing properties of the ZnO nanosheets to NO2 gas at room temperature under UV illumination were examined. Au nanoparticles with diameters of a few tens of nanometers were distributed over the ZnO nanosheets. The responses of the multiple networked nanosheet gas sensors were improved 1.8–3.3 fold by Au functionalization at NO2 concentrations ranging from 1 to 5 ppm. Furthermore, the Au-functionalized ZnO nanosheet gas sensors showed a considerably enhanced response at room temperature under ultraviolet (UV) illumination. In addition, the mechanisms through which the gas sensing properties of ZnO nanosheets are enhanced by Au functionalization and UV irradiation are discussed.  相似文献   

7.
This paper reports the influence of introducing nanocrystalline diamond powder on the growth and photoluminescence of ZnO nanorods fabricated by hydrothermal technique. The majority of ZnO nanorods show an open-ended feature due to the addition of nano-diamond powder in the reaction solution. It is speculated that the diamond nanocrystallines dropped on the top of the growing ZnO nanorods would suppress the further growth at the localized positions to form the open-ended nanorods. The photoluminescence spectra of the ZnO products show the band-edge-related UV emission of ZnO nanorods at ~ 380 nm, in addition to a broad visible band centered at about 650 nm, which may originate from the emissions related to defects in the open-ended ZnO nanorods. The open-ended ZnO nanorods and/or combined with diamond nanocrystallines would be favorable for potential applications including UV sensors, electron field emitter, and various photoelectric nanodevices.  相似文献   

8.
A hydrothermal method to grow vertical-aligned ZnO nanorod arrays on ZnO films obtained by atomic layer deposition (ALD) is presented. The growth of ZnO nanorods is studied as function of the crystallographic orientation of the ZnO films deposited on silicon (100) substrates. Different thicknesses of ZnO films around 40 to 180 nm were obtained and characterized before carrying out the growth process by hydrothermal methods. A textured ZnO layer with preferential direction in the normal c-axes is formed on substrates by the decomposition of diethylzinc to provide nucleation sites for vertical nanorod growth. Crystallographic orientation of the ZnO nanorods and ZnO-ALD films was determined by X-ray diffraction analysis. Composition, morphologies, length, size, and diameter of the nanorods were studied using a scanning electron microscope and energy dispersed x-ray spectroscopy analyses. In this work, it is demonstrated that crystallinity of the ZnO-ALD films plays an important role in the vertical-aligned ZnO nanorod growth. The nanorod arrays synthesized in solution had a diameter, length, density, and orientation desirable for a potential application as photosensitive materials in the manufacture of semiconductor-polymer solar cells.

PACS

61.46.Hk, Nanocrystals; 61.46.Km, Structure of nanowires and nanorods; 81.07.Gf, Nanowires; 81.15.Gh, Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.)  相似文献   

9.
《Ceramics International》2021,47(20):28811-28820
Highly sensitive NO2 gas sensors with low detection limit are vital for practical application in air pollution monitoring. Here, the NO2 gas sensing performance of porous ZnO nanosheets and nanoplates were investigated, with different shape and thickness. It was found that ultra-thin ZnO nanoplates had a higher sensitivity than coral-like ZnO nanosheets. The results were attributed to the high specific surface and very small thickness of the ultrathin nanoplates. The nanoplates have indeed a thickness of 15 nm compared to that of the nanosheets which is 100 nm, and a BET surface area of 75 m2/g, while that of the nanosheets is 6 m2/g. The chemosensor based on ultra-thin ZnO nanoplates shows a response (calculated as the ratio between the resistance of the sensor in the presence of the gas and in its absence) of 76 to 0.5 ppm of NO2 at 200 °C, with a theoretical detection limit of 3 parts per trillion and a selectivity higher than 760 towards acetone, ethanol, isopropyl alcohol, triethylamine, SO2 and CO. The specific surface and the small thickness of the ultra-thin nanoplates contribute to its highly improved sensing performance, making it ideal for NO2 gas sensing.  相似文献   

10.
Selective area growth of ZnO nanorods is accomplished on microgap electrodes (spacing of 6 μm) by using a facile wet chemical etching process. The growth of ZnO nanorods on a selected area of microgap electrode is carried out by hydrothermal synthesis forming nanorod bridge between two electrodes. This is an attractive, genuine, direct, and highly reproducible technique to grow nanowire/nanorod onto the electrodes on selected area. The ZnO nanorods were grown at 90°C on the pre-patterned electrode system without destroying the electrode surface structure interface and geometry. The ZnO nanorods were tested for their application in ultraviolet (UV) sensors. The photocurrent-to-dark (Iph/Id) ratio was 3.11. At an applied voltage of 5 V, the response and recovery time was 72 and 110 s, respectively, and the response reached 2 A/W. The deposited ZnO nanorods exhibited a UV photoresponse that is promising for future cost-effective and low-power electronic UV-sensing applications.  相似文献   

11.
Flower-like 3D ZnO microstructures constructed from nanorods of different sizes were prepared by a microwave hydrothermal (MH) process in the presence of o-, m- and p-nitrobenzoic acid, respectively. Well-crystallized flower-like ZnO microstructures were obtained after 10 min MH treatment. The X-ray powder diffraction (XRD) test indicated that all the products were consistent with the hexagonal ZnO phase, and scanning electron microscopy (SEM) investigation revealed that the flower-like 3D ZnO microstructures were built with sword-like nanorods 60-100 nm in width and several micrometers in length. The formation mechanism of these flower-like 3D ZnO microstructures is discussed briefly. The gas sensitivity of the as-prepared ZnO microstructures to ethanol at different operation temperatures and concentrations was also studied. The results indicated that the gas sensitivity of the ZnO microstructures was influenced by the particle size and microcosmic configuration, the larger particles with crowded nanorods having higher gas sensitivity.  相似文献   

12.
《Ceramics International》2020,46(10):15764-15771
The sliver (Ag) modified zinc oxide (ZnO) nanorods were successfully obtained with a simplified and environmentally friendly solvothermal method. Materials characterization indicated that the metallic Ag was located on the outside of ZnO nanorods after annealing. In comparison with ZnO nanorods, Ag modified ZnO (Ag–ZnO) nanorods exhibited a considerably enhanced response to C2H2. The response of the 3 at% Ag–ZnO based sensor operating at 175 °C is 539 (Ra/Rg), which is the highest value among all the sensors in detecting 100 ppm C2H2. The Ag–ZnO based sensors exhibited fast response speed, lower operation temperature and higher selectivity.  相似文献   

13.
《Ceramics International》2017,43(17):14873-14879
The pristine and Cr-doped ZnO nanorods were successfully synthesized via a facile hydrothermal route. We found that the ethanol gas response of ZnO was improved significantly by Cr doping. In particular, the enhanced gas-sensing mechanism was investigated by first-principles calculations upon proposed surface adsorption models. The calculated results revealed that the Cr-doped ZnO (0 0 0 1) surface enabled transfer larger electrons and adsorb more oxygen molecules than that of undoped one, thus holding the potential for further enhancement in gas response of ZnO-based sensors.  相似文献   

14.
Well-dispersed fish gelatin-based nanocomposites were prepared by adding ZnO nanorods (NRs) as fillers to aqueous gelatin. The effects of ZnO NR fillers on the mechanical, optical, and electrical properties of fish gelatin bio-nanocomposite films were investigated. Results showed an increase in Young''s modulus and tensile strength of 42% and 25% for nanocomposites incorporated with 5% ZnO NRs, respectively, compared with unfilled gelatin-based films. UV transmission decreased to zero with the addition of a small amount of ZnO NRs in the biopolymer matrix. X-ray diffraction showed an increase in the intensity of the crystal facets of (10ī1) and (0002) with the addition of ZnO NRs in the biocomposite matrix. The surface topography of the fish gelatin films indicated an increase in surface roughness with increasing ZnO NR concentrations. The conductivity of the films also significantly increased with the addition of ZnO NRs. These results indicated that bio-nanocomposites based on ZnO NRs had great potentials for applications in packaging technology, food preservation, and UV-shielding systems.  相似文献   

15.
ZnO with hierarchical microspheres and hexagonal prisms structures were successfully synthesized by hydrothermal microemulsion route. Based on X-ray diffraction and scanning electron microscopy observation of the products at the different reaction time periods, the formation mechanism of three-dimensional hierarchical ZnO microspheres was proposed. Ultraviolet and visible diffuse reflectance spectra indicated that as-synthesized ZnO microspheres had enhanced absorption in both ultraviolet and visible light areas. The photocatalytic activities of as-synthesized products were evaluated by monitoring the degradation of methylene blue solution. Due to the synergistic effects of the high crystallization and special hierarchical structure, the hierarchical ZnO microsphere exhibited the highest photocatalytic activity.  相似文献   

16.
《Ceramics International》2020,46(3):2931-2939
The design and development of one-dimensional nanostructures have been gaining considerable interest owing to the exceptional optoelectronic and catalytic properties of these structures. Thus, herein, wurtzite phase polycrystalline one-dimensional nanostructures of pristine and Co-substituted ZnO nanorods were fabricated using the hydrothermal method. Co ion substitution into the ZnO lattice was confirmed by structural analysis. Furthermore, an X-ray photoelectron spectroscopic survey suggested that Co ion inclusion in the host Zn2+ site occurred with a Co2+ oxidization state. The quenching of band gap with the Co inclusion into ZnO host sites was determined through optical studies. Room temperature hysteresis curves demonstrated the superparamagnetic nature of the synthesized ZnO and Co-doped ZnO nanorods. The photocatalytic activity of the synthesized nanorods was estimated by the exclusion of Rhodamine-B degradation under artificial solar light illumination. Distinctly, 66.5% photocatalytic degradation efficiency was achieved in Co-doped ZnO nanorods over 100 min; however, only 64.13% efficiency was observed for bare ZnO nanorods over 120 min. The enhanced photocatalytic activity in the Co-doped ZnO sample could be due to the creation of huge trapping sites, massive surface area, and generation and consequent separation of electron and hole pairs.  相似文献   

17.
Quasi-one-dimensional (quasi-1D) ZnO nanowire arrays with hexagonal pattern have been successfully synthesized via the vapor transport process without any metal catalyst. By utilizing polystyrene microsphere self-assembled monolayer, sol–gel-derived ZnO thin films were used as the periodic nucleation sites for the growth of ZnO nanowires. High-quality quasi-1D ZnO nanowires were grown from nucleation sites, and the original hexagonal periodicity is well-preserved. According to the experimental results, the vapor transport solid condensation mechanism was proposed, in which the sol–gel-derived ZnO film acting as a seed layer for nucleation. This simple method provides a favorable way to form quasi-1D ZnO nanostructures applicable to diverse fields such as two-dimensional photonic crystal, nanolaser, sensor arrays, and other optoelectronic devices.  相似文献   

18.
The effects of rare earth elements (Ce, Eu, and Er) doping on the microstructure and gas sensing properties of ZnO nanowires were investigated. The Ce, Eu, Er-doped ZnO nanowires and pristine ZnO nanowires were synthesized via a solvothermal route. The structure of the prepared samples was studied and compared by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron microscopy. The gas sensors were fabricated by coating the prepared samples on aluminum oxides tube-based Au sensing electrode, with Ni-Cr heating wire to control the operating temperature. The operating temperature of all sensors was determined to be 300 °C with consideration of ethanol response. At this temperature, all sensors showed good ethanol sensing performance, with the 1%Ce-doped ZnO nanowires-based sensor exhibited the highest ethanol response over the other sensors. The mechanism for the microstructure and gas sensing behavior difference of various samples was discussed.  相似文献   

19.
《Ceramics International》2022,48(20):30249-30259
Various metal oxides with unique microstructures have been hopeful in fabricating gas sensors applications. This paper reports the room-temperature sensing properties of hierarchical Sb2WO6 (antimony tungstate) microspheres for nonanal, which is a dominant aromatic aldehyde compound in cooked rice. The hierarchical Sb2WO6 microspheres were obtained by pH control (from pH 1 to 5) through a one-step hydrothermal reaction. The experiment indicated that the optimal response of the Sb2WO6 (pH = 4) gas sensor to 30 ppm nonanal reached 62 at room temperature, which was about 8 times that of Sb2WO6 (pH = 1). The improved sensing performance resulted from the finer microstructure and larger specific surface area of Sb2WO6 with a pH value of 4, providing abundant adsorption sites for nonanal molecules. Meanwhile, the practicability of cooked rice stored for various periods was verified through gas detection, and the results indicated that the sensor might recognize the deterioration of cooked rice and ready-to-eat rice. Therefore, the as-prepared sensor can be used in electronic nose systems to detect cooked rice and ready-to-eat rice deterioration and improve rice cooking methods.  相似文献   

20.
《Ceramics International》2016,42(12):13555-13561
In this article, we report a comparative study of the influence of pressure-assisted (1.72 MPa) versus ambient pressure thermal annealing on both ZnO thin films treated at 330 °C for 32 h. The effects of pressure on the structural, morphological, optical, and gas sensor properties of these thin films were investigated. The results show that partial preferential orientation of the wurtzite-structure ZnO thin films in the [002] or [101] planes is induced based on the thermal annealing conditions used (i.e., pressure assisted or ambient pressure). UV–vis absorption measurements revealed a negligible variation in the optical -band gap values for the both ZnO thin films. Consequently, it is deduced that the ZnO thin films exhibit different distortions of the tetrahedral [ZnO4] clusters, corresponding to different concentrations of deep and shallow level defects in both samples. This difference induced a variation of the interface/bulk-surface, which might be responsible for the enhanced optical and gas sensor properties of the pressure-assisted thermally annealed film. Additionally, pressure-assisted thermal annealing of the ZnO films improved the H2 sensitivity by a factor of two.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号