首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dense Ti3Si(Al)C2-based ceramics were synthesized using reactive melt infiltration (RMI) of Al70Si30 alloy into the porous TiC preforms. The effects of the infiltration temperature on the microstructure and mechanical properties of the synthesized composites were investigated. All the composites infiltrated at different temperatures were composed of Ti3Si(Al)C2, TiC, SiC, Ti(Al, Si)3 and Al. With the increase of infiltration temperature from 1050 °C to 1500 °C, the Ti3Si(Al)C2 content increased to 52 vol.% and the TiC content decreased to 15 vol.%, and the Vickers hardness, flexural strength and fracture toughness of Ti3Si(Al)C2-based composite reached to 9.95 GPa, 328 MPa and 4.8 MPa m1/2, respectively.  相似文献   

2.
《Ceramics International》2017,43(5):4551-4556
A simple process based on melt infiltration was used to modify a silicon carbide (SiC) ceramic and thus improve its mechanical properties. SiC ceramics infiltrated with an Al alloy for 2 h, 4 h, 6 h, and 8 h exhibited outstanding mechanical performance. The three-point bending strength, four-point bending strength, and impact toughness of the SiC ceramics increased by 125–135%, 170–180%, and 140%, respectively, after infiltration with the Al alloy at 900 °C for 4–6 h. The maximum three-point bending strength, four-point bending strength, and impact toughness achieved were 430 MPa, 360 MPa, and 3.5 kJ/m2, respectively. Analysis of the processing conditions and microstructure demonstrated that the molten Al alloy effectively infiltrated the gaps between the SiC particles, forming a compact structure with the particles, and some of the Al phases reacted with Si to form Al-Si eutectic phases. Moreover, the results showed that a reaction layer is present on the surface of the SiC sample, which mainly contains the Ti3SiC2 phase. Both complete infiltration with the Al alloy and the formation of the Ti3SiC2 phase contributed to the improvement of the mechanical properties.  相似文献   

3.
To improve the ablation resistance of carbon/carbon composites at the temperature above 2000 K, a ZrB2-SiC-ZrC ultra-high temperature ceramic coating was prepared by combination of supersonic atmosphere plasma spray (SAPS) and reaction melt infiltration. The micro-holes in ZrB2-Si-ZrC coating prepared by SAPS were effectively filled and the compactness and interface compatibility between the coating and C/C composites was improved through the reaction melt infiltration process. The ultra-high temperature ceramic coating exhibited good ablation resistance under oxyacetylene torch ablation above 2000 K. After ablation for 120 s, the mass and linear ablation rates of the ZrB2-SiC-ZrC coated C/C samples were only ?0.016 × 10?3 g/s and 1.30 µm/s, respectively. Good ablation resistance of the ultra-high temperature ceramic coating is mainly attributed to the dense coating structure and the improvement of interface compatibility between the coating and C/C composites.  相似文献   

4.
AlON was successfully brazed to BN-Si3N4 using a Ag-Cu-Ti filler alloy. SEM, TEM and XRD studies revealed that a TiN + TiB2 + Ti5Si3 reaction layer formed adjacent to the BN-Si3N4 while a (Cu,Al)3Ti3O layer formed adjacent to the AlON. In addition, Ag-Cu eutectic, Cu(s,s) and AlCu2Ti were observed in the brazing filler. The effect of brazing temperature on the microstructure and mechanical properties of the joints was investigated. As the brazing temperature increased, the reaction layers became thicker, while the thickness of the brazing seam decreased. Meanwhile, the amount and the size of AlCu2Ti intermetallic compounds decreased. The shear strength of the joints first increased and then dropped with increasing the brazing temperature. A joint with a maximum strength of 94 MPa was obtained when it was brazed at 850 °C for 15 min.  相似文献   

5.
《Ceramics International》2016,42(9):10951-10956
A Mo/Ti3SiC2 laminated composite is prepared by spark plasma sintering at 1300 °C under a pressure of 50 MPa. Al powder is used as sintering aid to assist the formation of Ti3SiC2. The fabricated composites were annealed at 800, 1000 and 1150 °C under vacuum for 5, 10, 20 and 40 h to study the composite's interfacial phase stability at high temperature. Three interfacial layers, namely Mo2C layer, AlMoSi layer and Ti5Si3 solid solution layer are formed during sintering. Experimental results show that the Mo/Ti3SiC2 layered composite prepared in this study has good interfacial phase stability up to at least 1000 °C and the growth of the interfacial layer does not show strong dependence on annealing time. However, after being exposed to 1150 °C for 10 h, cracks formed at the interface.  相似文献   

6.
Al/B4C composites with various volume contents of B4C (5%, 10%, 15%, 20%, and 25%) reinforcing the Al matrix, have been fabricated by vacuum hot press sintering at 680 °C, with a soaking time of 90 min and external pressure of 30 MPa. Mechanical properties, phase composition, and microstructure of the Al/B4C composites are discussed to reveal the physical properties of the composites. Field emission transmission electron microscopy and selected area electron diffraction have been employed to verify the interior structure and crystal growth direction, respectively. The Vickers hardness, fracture strength, tensile strength, and maximum force attained the optimal values of 108.45 ± 4.02 HV, 585.70 ± 23.26 MPa, 196.18 ± 2.48 MPa, and 4.44 ± 0.17 kN, respectively, for 25 vol% B4C/Al composites. The static compression strength increased before the 15 vol% B4C addition and then decreased, acquiring the highest value of 292.15 ± 2.09 MPa for 15 vol% B4C/Al composites. In general, the relative density and ductility of these composites consistently increased, with an increase in the volume content of Al, achieving a maximum of 99.22% and 54.63 ± 7.34%, respectively, for 5 vol% B4C/Al composites.  相似文献   

7.
Based on the structure characteristic of Ti3SiC2 and the easy formation of Ti3Si1−xAlxC2 solid solution, a transient liquid phase (TLP) bonding method was used for bonding layered ternary Ti3SiC2 ceramic via Al interlayer. Joining was performed at 1100–1500 °C for 120 min under a 5 MPa load in Ar atmosphere. SEM and XRD analyses revealed that Ti3Si(Al)C2 solid solution rather than intermetallic compounds formed at the interface. The mechanism of bonding is attributed to aluminum diffusing into the Ti3SiC2. The strength of joints was evaluated by three point bending test. The maximum flexural strength reaches a value of 263 ± 16 MPa, which is about 65% of that of Ti3SiC2; for the sample prepared under the joining condition of 1500 °C for 120 min under 5 MPa. This flexural strength of the joint is sustained up to 1000 °C.  相似文献   

8.
TiC/Ti3SiC2 composites were synthesized with Ti/Si/C and Al (in which extra C addition ranges from 0 to 25 wt.%) as starting powders by hot-pressed sintering method at 1400 °C under 30 MPa. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to evaluate the phase composition and the fracture surface. The results reveal that with the increase of extra C addition, the content of Ti3SiC2 phase decreases while the content of TiC phase increases. Graphite phase is detected in the samples with extra C addition of 20 wt.% and 25 wt.%. The bending strength decreases from 554.81 MPa to 57.44 MPa due to the decrease of the densification and Ti3SiC2 phase content. The electrical conductivity falls from 42,474.52 s/cm to 1524.95 s/cm, resulting from lower Ti3SiC2 phase content and higher contact resistance.  相似文献   

9.
《Ceramics International》2016,42(8):9448-9454
A dense alumina fiber reinforced silicon carbide matrix composites (Al2O3/SiC) modified with Ti3Si(Al)C2 were prepared by a joint process of chemical vapor infiltration, slurry infiltration and reactive melt infiltration. The conductive Ti3Si(Al)C2 phase introduced into the matrix modified the microstructure of Al2O3/SiC. The refined microstructure was composed of conductive phase, semiconductive phase and insulating phase, which led to admirable electromagnetic shielding properties. Electromagnetic interference shielding effectiveness (EMI SE) of Al2O3/SiC and Ti3Si(Al)C2 modified Al2O3/SiC were investigated over the frequency range of 8.2–12.4 GHz. The EMI SE of Al2O3/SiC-Ti3Si(Al)C2 exhibited a significant increase from 27.6 to 42.1 dB compared with that of Al2O3/SiC. The reflection and absorption shielding effectiveness increased simultaneously with the increase of the electrical conductivity.  相似文献   

10.
Ti3SiC2/3Y-TZP (3 mol% Yttria-stabilized tetragonal zirconia polycrystal) composites were fabricated by spark plasma sintering (SPS). The effect of Ti3SiC2 content on room-temperature mechanical properties and microstructures of the composites were investigated. The Vickers hardness and bending strength of the composites decreased with the increasing of Ti3SiC2 content whereas the fracture toughness increased. The maximum fracture toughness of 9.88 MPa m1/2 was achieved for the composite with 50 vol.% Ti3SiC2. The improvement of the fracture toughness is owing to the crack deflection, crack bridging, the transformation toughening effects.  相似文献   

11.
Al2O3/Cu (with 30 wt% of Cu) composites were prepared using a combined liquid infiltration and spark plasma sintering (SPS) method using pre-processed composite powders. Crystalline structures, morphology and physical/mechanical properties of the sintered composites were studied and compared with those obtained from similar composites prepared using a standard liquid infiltration process without any external pressure. Results showed that densities of the Al2O3/Cu composites prepared without applying pressure were quite low. Whereas the composites sintered using the SPS (with a high pressure during sintering in 10 min) showed dense structures, and Cu phases were homogenously infiltrated and dispersed with a network from inside the Al2O3 skeleton structures. Fracture toughness of Al2O3/Cu composites prepared without using external pressure (with a sintering time of 1.5 h) was 4.2 MPa m1/2, whereas that using the SPS process was 6.5 MPa m1/2. These toughness readings were increased by 18% and 82%, respectively, compared with that of pure alumina. Hardness, density and electrical resistivity of the samples prepared without pressure were 693 HV, 82.5% and 0.01 Ω m, whereas those using the SPS process were 842 HV, 99.1%, 0.002 Ω m, respectively. The enhancement in these properties using the SPS process are mainly due to the efficient pressurized infiltration of Cu phases into the network of Al2O3 skeleton structures, and also due to high intensity discharge plasma which produces fully densified composites in a short time.  相似文献   

12.
In this paper, Ti3Si(Al)C2 was introduced into dense SiC/SiC to improve the mechanical and electromagnetic interference (EMI) shielding properties. In order to reveal the effect of Ti3Si(Al)C2, dense SiC/SiC-Ti3Si(Al)C2 and dense SiC/SiC without Ti3Si(Al)C2 were fabricated. Owing to the plastic deformation toughening mechanism of Ti3Si(Al)C2, SiC/SiC-Ti3Si(Al)C2 performs a new damage mode characterized by matrix/matrix (m/m) debonding. High interfacial shear strength (IFSS) due to large thermal residual stress (TRS) is weakened by m/m debonding. This new mode also brings high effective volume fraction of loading fibers and long path of crack propagation. Hence SiC/SiC-Ti3Si(Al)C2 exhibits higher flexural strength (503 MPa) and fracture toughness (23.7 MPa · m1/2) than the dense SiC/SiC without Ti3Si(Al)C2. In addition, dense SiC/SiC-Ti3Si(Al)C2 shows excellent electromagnetic interference shielding effectiveness (EMI SE, 43.0 dB) in X-band, revealing great potential as thermo-structural and functional material.  相似文献   

13.
The effect of coated-SiCp multimodal-size-distribution on the pitting behavior of Al/SiCp composites was investigated. α-SiC powders (10, 54, 86, and 146 μm) were properly mixed and coated with silica to produce porous preforms with 0.6 volume fraction of the reinforcement with monomodal, bimodal, trimodal, and cuatrimodal size distribution. The preforms were infiltrated with the alloy Al–13 Mg–1.8Si (wt.%) in argon followed by nitrogen at 1100 ºC for 60 min. The composites were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) before and after cyclic polarization measurements in 0.1 M NaCl de-aerated solutions. Results show that whereas corrosion and passivation potentials are not influenced with increase in SiCp particle size distribution, favorably, the susceptibility to pitting corrosion decreases. This beneficial effect is ascribed to the smaller area of the alloy matrix exposed to the chloride solution with augment in particle size distribution, substantially when going from monomodal to bimodal SiCp particle size distribution.  相似文献   

14.
Herein we study the infiltration behavior of Ti and Cu fillers into a Ti2AlC/Ti3AlC2MAX phase composites using a TIG-brazing process. The microstructures of the interfaces were investigated by scanning electron microscopy and energy dispersive spectrometry. When Ti2AlC/Ti3AlC2 comes into contact with molten Ti, it starts decomposing into TiCx, a Ti-richandTi3AlC; when in contact with molten Cu, the resulting phases are Ti2Al(Cu)C, Cu(Al), AlCu2Ti and TiC. In the presence of Cu at approximately 1630 °C, a defective Ti2Al(Cu)C phase was formed having a P63/mmc structure. Ti3AlC2 MAX phase was completely decomposed in presence of Cu or Ti filler-materials. The decomposition of Ti2AlC to Ti3AlC2 was observed in the heat-affected zone of the composite. Notably, no cracks were observed during TIG-brazing of Ti2AlC/Ti3AlC2 composite with Ti or Cu filler materials.  相似文献   

15.
This paper focuses on the preparation of near‐net‐shaped dense Ti3SiC2‐based materials via an indirect three‐dimensional printing (3D printing) and postreactive melt infiltration (RMI) processes. TiC preforms with bimodal pore size distribution were fabricated through 3D printing, followed by the infiltration of Si melt and Al–Si alloy (Al40Si60 and Al70Si30). Dense composites with density of ~4.1 g/cm3 were obtained after the infiltration. No volume shrinkage was obtained after the reactive infiltration with Al–Si alloy. The participation of Al during the infiltration process promoted the formation of Ti3SiC2. The as‐fabricated Ti3SiC2‐based materials showed enhanced mechanical and electromagnetic interference shielding properties.  相似文献   

16.
The effect of Ti content on the wettability of AgCu-Ti filler on porous Si3N4 ceramic was studied by the sessile drop method. AgCu-2 wt% Ti filler alloy showed a minimum contact angle of 14.6° on porous Si3N4 ceramic during the isothermal wetting process. The mechanism of AgCu-Ti filler wetting on porous Si3N4 ceramic is clarified in this paper. Porous Si3N4 ceramic was brazed to TiAl alloy using AgCu-xTi (x = 0, 2 wt%, 4 wt%, 6 wt%, 8 wt%) filler alloy at 880 °C for 10 min. The effect of Ti content on the interfacial microstructure and mechanical properties of porous-Si3N4/AgCu-xTi/TiAl joints are studied. The typical interfacial microstructure of p-Si3N4/AgCu-Ti/TiAl joint is p-Si3N4/penetration layer (Ag(s,s)+Si3N4+TiN+Ti5Si3)/Ag(s,s)+Cu(s,s)+TiCu/AlCu2Ti/TiAl. The maximum shearing strength of the brazed joint was 14.17 MPa and fracture that occurred during the shearing test propagated in the porous Si3N4 ceramic substrate for the formation of the penetration layer.  相似文献   

17.
《Ceramics International》2017,43(9):7369-7373
Al−7Si−5Cu/Al2O3−ZrO2 composites with nacre-like structures were prepared via ice-templating and gas pressure infiltration techniques. The composites were subsequently heat-treated at 850 °C for 0, 30, 60, 90 and 120 min to regulate the interfacial reaction between Al and ZrO2. The yield of larger (Al1−m, Sim)3Zr and ZrSi2 phases increased with longer dwell times. The compressive strength initially increased and then decreased. The highest strength was observed in composites treated for 60 min and reached 1600±40, 1261±30 and 1033±22 MPa at temperatures of 20, 150 and 300 °C, respectively. These values increased by 30−40% as compared to those of the non-treated counterparts and were 2-, 5- and 12-fold more than those of the matrix alloy, respectively, which is demonstrative of the material's excellent load-bearing capacity, particularly at elevated temperatures.  相似文献   

18.
In this article, Ti/TiC/SiC/Al powder mixtures with molar ratios of 4:1:2:0.2 were high energy ball-milled, compacted, and heated in vacuum with various schedules, in order to reveal the effects of temperature, soaking time, thickness of the compacts, and carbon content on the purity of the sintered compacts. X-ray diffraction and scanning electron microscopy were employed to investigate the phase purity, particle size and morphology of the synthesized samples. It was found that the Ti3SiC2 content nearly reached 100 wt.% on the surface layer of the sintered compacts prepared in the temperature range from 1350 °C to 1400 °C for 1 h. Powder containing 91 wt.% Ti3SiC2 was successfully synthesized by heating 6 mm green compacts of 4Ti/1TiC/2SiC/0.2Al at 1380 °C for 1 h in vacuum. The excessive carbon content failed to improve the purity of Ti3SiC2 powder. TiC phase was the main impurity in the formation process of Ti3SiC2.  相似文献   

19.
《Ceramics International》2016,42(8):9557-9564
In this work the influence of the processing routes on the microstructure and properties of Ti3SiC2-based composites was investigated. The three main processing steps are (i) three-dimensional printing of Ti3SiC2 powder blended with dextrin, (ii) pressing of printed samples (uniaxial or cold isostatic pressing), and (iii) sintering of pressed samples at 1600 °C for 2 h. The Ti3SiC2-based composites were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). Young's Modulus and flexural strength were measured to examine the mechanical properties. Porosity, density, shrinkage, and mass change were measured at each processing step. Those samples uniaxially pressed at 726 MPa presented the highest density, shrinkage, and mass change. However, microstructural morphologies were crack-free and homogeneous for cold isostatic pressed Ti3SiC2-based composites as compared to uniaxially pressed samples. The highest values for Young's Modulus (~300 GPa) and flexural strength (~3 GPa) were observed with uniaxially pressed Ti3SiC2-based composites.  相似文献   

20.
《Ceramics International》2016,42(6):7107-7117
The Ti3SiC2 and Ti3SiC2/Pb composites were tested under dry sliding conditions against Ni-based alloys (Inconel 718) at elevated temperatures up to 800 °C using a pin-on-disk tribometer. Detailed tribo-chemical changes of Pb on sliding surface were discussed. It was found that the tribological behavior were insensitive to the temperature from 25 °C (RT) to 600 °C (friction coefficient ≈0.61–0.72, wear rate ≈10−3 mm3 N m−1). An amount of Pb in the composites played a key role in lubricating with the temperature below 800 °C. The friction coefficient (≈0.22) and wear rate (≈10−7 mm3 N m−1) at elevated temperatures were both decreased by the added PbO. The wear mechanisms of Ti3SiC2/Pb-Inconel 718 tribo-pair at elevated temperatures were believed to be the combined effect of abrasive wear and tribo-oxidation wear. During the sliding, two oxidization reactions proceed, 2Pb+O2=2PbO (below 600 °C) and 6PbO+O2=2Pb3O4 (800 °C). The friction coefficient and wear rate of the composites were reduced due to the self-lubricating effect of the tribo-oxidation products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号