首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
使用透射电镜(TEM)研究了Ti65合金在600~650℃、120~160 MPa条件下的蠕变变形行为及其微观变形机制。结果表明:初级蠕变变形机制主要由受攀移控制的位错越过α2相的过程主导;稳态蠕变阶段蠕变机制主要由受界面处扩散控制的位错攀移的过程主导,且应力指数为5~7。在初级蠕变阶段α2相与位错的相互作用是α2相对合金高温强化的主要方式,在稳态蠕变阶段沿α/β相界分布的硅化物阻碍位错运动与限制晶界滑移是硅化物对合金强化的主要方式。  相似文献   

2.
The microstructure and creep properties including minimum creep rate, time to 1% creep deformation and creep fracture time of a cast TiAl-based alloy with nominal chemical composition Ti–46Al–2W–0.5Si (at.%) were investigated. The creep specimens were prepared from investment-cast plate and two large turbine blades. Constant load creep tests were performed in air at applied stresses ranging from 150 to 400 MPa in the temperature range 973–1073 K. The microstructure of the specimens is characterised by optical, scanning and transmission electron microscopy before and after creep deformation. The minimum creep rate is found to depend strongly on the applied stress and temperature. The power law stress exponent of minimum creep rate is n = 7.3 and the apparent activation energy for creep is Qa = 427 ± 14 kJ/mol. The initial microstructure of the creep specimen is unstable. The 2(Ti3Al)-phase transforms to γ(TiAl)-phase and needle-like B2-precipitates during long-term creep testing at all testing temperatures. At lower applied stresses, the creep specimens fail by the growth and coalescence of cavities and small cracks formed along the γ/2 interfaces. At the highest applied stresses, the specimens fail by nucleation and propagation of cracks.  相似文献   

3.
The steady state creep behaviour of the two-phase Ti3Al-based alloy, Ti-24Al-11Nb, has been examined as a function of microstructure at temperatures ranging from 798 to 998 K and stress levels ranging from 30 to 400 MPa. Three microstructural conditions corresponding to 90% equiaxed 2, 40% equiaxed 2, and 100% lath 2 structures have been studied. A low-stress Coble creep regime has been identified, with the lath 2 structure showing the greates creep resistance in this regime. The lath 2 structure is also stronger in the dislocation creep regime. The creep strength of this ordered alloy is shown to derive from frequency factors for diffusion, which are about two to three orders of magnitude lower than those for disordered alloys. Activation energies for creep in both the diffusional and dislocation creep domains are similar to values obtained in disordered alloys.  相似文献   

4.
The creep response of SiC fiber-reinforced Si3N4 composites has been measured using four-point flexural loading at temperatures of 1200–1450°C and stress levels ranging from 250 to 350 MPa. Parameters characterizing the stress and temperature dependence of flexural creep strain rates were determined. A numerical analysis was also performed to estimate the power-law creep parameters for tensile and compressive creep from the bend test data. The incorpoporation of SiC fiber into Si3N4 resulted in substantial improvements in creep resistance even at very high stresses. The steady-state creep deformation mechanism, determined to be subcritical crack growth in the unreinforced matrix, changed to a mechanism in the composites of repeated matrix stress relaxation-fiber rupture-load dispersion by the matrix. Multiple fiber fracture rather than multiple matrix cracking resulted. The tertiary creep in the composite resulted from the rapid growth of the microcracks which initiated from the fiber rupture sites. Fiber strength, matrix cracking stress and interfacial shear strength have been identified as the key microstructural parameters controlling the creep behavior of the composite.  相似文献   

5.
为研究纳米颗粒增强铝基复合材料的高温蠕变特性,基于6063Al-Al2(SO4)3体系,采用超声化学原位合成技术,制备出不同Al2O3体积分数(5%、7%)的纳米Al2O3/6063Al复合材料,通过高温蠕变拉伸试验测试其高温蠕变性能,利用XRD、OM、SEM及TEM分析其微观形貌。结果表明:施加高能超声可显著细化增强体颗粒并提高其分布的均匀性,所生成的Al2O3增强颗粒以圆形或近六边形为主,尺寸为20~100nm;纳米Al2O3/6063Al复合材料的名义应力指数、表观激活能和门槛应力值与基体相比大幅提高,均随着增强体体积分数的增加而提高,表明纳米Al2O3/6063Al复合材料的抗蠕变性能提高;纳米Al2O3/6063Al复合材料的真应力指数为8,说明复合材料蠕变机制符合微结构不变模型,即受基体晶格扩散的控制;纳米Al2O3/6063Al复合材料的高温蠕变断口特征以脆性断裂为主,高应力下形成穿晶断裂,低应力下形成沿晶断裂和晶界孔洞;纳米Al2O3/6063Al复合材料的主要强化机制为位错强化与弥散强化。  相似文献   

6.
This paper presents an investigation of the tensile creep behaviour of woven fibre composite stitched, through the thickness, with cotton or carbon threads along the loading direction. Creep tests were conducted at various temperatures. It was found that the through-thickness stitching significantly improved the creep deformation and creep rupture resistance of these composites. The creep data were analysed using the ‘timetemperature-stress superposition principle’ theory (TTSSP). The long-term behaviour of the material could then be predicted by means of a master curve. Finite-element analyses of the composites was also carried out and the stitching was found to considerably reduce the interlaminar stresses.  相似文献   

7.
Quasistatic deformation behaviour of pure sintered iron in the temperature range between –184 and 600°C The deformation behaviour of pure sintered iron materials with densities between 6,88 und 7,57 g/cm3 was investigated in tension tests in the temperature range of –184 and 600°C. Supplementary compression tests were carried out at 20°C. Increasing density leads to increasing material resistances and ductility properties due to the increase of the bearing specimen cross sections as well as due to smaller numbers of pores, more spherical pores with smaller notch effects and smaller numbers of mircocracks, which are initiated at pores. After equal deformations, due to pore closing effects and the impediment of crack initation, the flow stresses of compressively deformed specimens are larger than those of tensily deformed. The deformation behaviour is dominated at low temperatures by thermal activated glide processes of dislocations and their interactions with short range obstacles, at middle temperatures by dynamic strain ageing due to elastic interactions of glide dislocations and diffusing carbon atoms and at high temperatures by recovery controlled dislocation creep processes.  相似文献   

8.
Observations are reported on isotactic polypropylene in tensile tests with various strain rates, relaxation tests at various strains, and creep tests with various stresses at room temperature. Constitutive equations are derived for the viscoelastic and viscoplastic responses of semicrystalline polymers at three-dimensional deformations with small strains. The stress-strain relations involve eight material constants that are found by fitting the experimental data. The model is applied to the numerical analysis of creep failure of polypropylene under various deformation modes (uniaxial tension, equi-biaxial tension, shear, multiple-step creep tests).  相似文献   

9.
Samples of calcium hexaluminate (CA6) were studied by four-point bending creep tests and mechanical spectroscopy at temperatures between 1300 and 1600 K. By using the temperature-compensated time concept, proposed by Dorn (1954, 1956), activation enthalpies of the order of 620 kJ/mol were deduced from both the isothermal creep and the internal friction measurements. A generic curve, “ master curve”, is obtained by a superposition of the isothermal mechanical loss spectrum along the temperature-compensated frequency axis. The master curve is composed of two components: a high-frequency part (peak) and a low-frequency part (exponential background). Both the peak and the background decrease after performing torsional creep. Additionally, the peak shifts towards higher frequency after annealing. The high temperature mechanical loss behavior of CA6 is discussed in terms of a dislocation model invoking anelastic and viscoplastic relaxation phenomena.  相似文献   

10.
The tensile creep behaviour of the high-temperature near -Ti alloy Ti–5.8Al–4.0Sn–3.5Zr–0.7Nb–0.35Si–0.06C (Timetal 834) with a duplex microstructure has been extensively investigated in the temperature range from 500°C to 625°C and the stress range from 100 to 550 MPa. Both primary and secondary creep are being considered. The results of the primary creep are analysed in terms of the dependencies of stress on strain (strain hardening) and on strain rate (strain rate sensitivity). It is shown that the strain-hardening exponent depends on temperature, and takes values between 0.5 for 500°C and 0.33 for higher temperatures; this would give a dependence of the primary creep strain of σ2 and σ3. The strain rate exponents obtained in both primary and secondary creep have been found to be similar; this is also the case for the activation energies. It is thought that, in the stress and temperature range investigated, creep is controlled by bow-out and climb of dislocation segments pinned at lath boundaries and second-phase particle. Analysis of the dislocation substructure is presented to give some support for this mechanism.  相似文献   

11.
Abstract

The creep deformation behaviour of coarse grained AZ31 magnesium alloy was examined in the temperature range from 423 to 673 K (0·46–0·73Tm) under various constant stresses covering low strain rate range from 4×10?9 to 2×10?2 s?1. Most shape of the creep curve was typical of class II behaviour. However, only at low stress and low temperature, the shape of the creep curve was typical of class I behaviour. At very low stress at 673 K, the stress exponent for the secondary creep rate was ~2. At low stress level, the stress exponent was ~3 and the present results were in good agreement with the prediction of Takeuchi and Argon model. At high stress level, the stress exponent was ~5 and the present results were in good agreement with the prediction of Weertman model. The transition of deformation mechanism from solute drag creep to dislocation climb creep could be explained in terms of solute atmosphere breakaway concept.  相似文献   

12.
The creep resistance of several single crystal oxides is evaluated on the basis of creep data from different sources using a Larson-Miller (L-M) method. The possible creep mechanisms involved in high temperature creep deformation of single crystal oxides are discussed by comparing the collected creep data with theoretical creep models. The high temperature creep of single crystal oxides is generally considered as a diffusion-controlled process: dislocation climb controlled by the lattice diffusion of the slowest moving species (power law) at moderately high stresses, Harper-Dorn creep at low stresses, and power law breakdown at high stresses. The relative comparison of the creep data from different sources using the L-M method and the general analysis about the high temperature creep behaviour indicate that single crystal oxides with a precise stoichiometric composition, complex crystal structure and selected orientation such as [111] oriented YAG (Y3Al5O12),c-axis Al2O3, [110] oriented MgAl2O4 are potential candidates as reinforcements for very high temperature structural applications.  相似文献   

13.
Any mechanical surface treatment and machining leaves ‘footprints’ in the form of residual stress fields in the surface region of technical parts or components, which are detectable by X-ray diffraction. In the present paper, we applied different X-ray methods to investigate the residual stress state in the near-surface zone of sintered silicon carbide after mechanical surface processing. Using the sin2 ψ-based ‘universal plot’ method, we found steep gradients for the in-plane components σ11 and σ22 in the form of high compressive stresses at the surface, which change into tensile stresses within a few microns. To gain information on the triaxial residual stress state, we applied the scattering vector method, which is based on strain depth profiling by sample rotation around the diffraction vector. For the in-plane stresses, we observed gradients similar to those obtained by the ‘universal plot’ method, but they were shifted on the absolute scale towards tensile stress. We explain this difference by ‘pseudo-macroscopic’ tensile residual stress fields σ33, which act normal to the surface and therefore pretend higher in-plane compressive stresses σii (i = 1, 2), if they are not regarded in the evaluation procedure.  相似文献   

14.
The dislocation structures of an industrial single-crystal γ + γ′ two-phase alloy DD3 after tensile deformation from room temperature to 1273K were studied by transmission electron microscopy. The strength of this alloy decreased with an increase in the temperature, and showed a strength peak at 1033K. At room temperature, the dislocations shearing the γ′ particles were found to be 1/3<112> partial dislocations on the dodecahedral slip system <112>{111}. Some dislocation pairs on the cubic <110>{100} system that blocked the glide of dislocations were found at a medium temperature of 873K. As a result, dislocation bands were formed. Shearing of γ′ particles by 1/3<112> partial dislocations on the dodecahedral slip system <112>{111} was also found at this temperature. At the peak temperature of 1033K, because of the strong interaction between dislocations on the {111} and {100} planes, the extent of dislocation bands with high dislocation densities was extensive. The 1/3<112> partial dislocations on the dodecahedral slip system <112>{111} also existed. When the temperature reached the high temperature of 1133K, the range of dislocation bands was limited. The γ′ particles were sheared by <110> dislocation pairs on the octagonal <110>{111} system and the cubic <110>{100} system. At 1273K, the regular hexagonal dislocation networks were formed in the γ matrix and at the γ/γ′ interface. The Burgers vectors of the network were found to be b1 = 1/2[110], b2 = 1/2[1–10], b3 = [100], and the last one was formed by the reaction of b1 + b2 → b3. Dislocations shearing the γ′ particles were found to be <110> dislocation pairs on the octagonal system <110>{111} and cubic slip system <110>{100} at 1273K.  相似文献   

15.
The flexural creep behaviour of synroc-C in an inert atmosphere was studied at temperatures of 860°C, 900°C and 940°C under constant-load conditions in four-point bending. Applied stresses ranged from 100 to 160 MPa. Individual creep curves show primary and secondary creep but little or no tertiary creep stage. The log of the creep rate was found to increase linearly with log of the applied stress at each temperature over the entire stress range. Analysis of the creep data using the Norton power-law function revealed that the stress exponent decreased from 3.3 ± 0.6 for the 860°C and 900°C data to 2.0 ± 0.2 for the 940°C data, and an activation energy of 440 ± 40 kJ/mol was obtained over the entire temperature and stress range. Comparative analysis with the theta-projection equation was found to adequately represent the data yielding an activation energy of 464 kJ/mol while also showing a trend for the stress exponent to decrease with increasing temperature. Microstructural examination revealed extensive cavitation on the tensile surface of the creep specimens subjected to higher stresses at 900°C and 940°C. Dynamic high temperature X-ray diffraction analysis indicated little change in the phase assemblage apart from a slight reduction in the amount of the hollandite phase at higher temperatures which was attributed to a minor amount of oxidation. The possible creep damage mechanism was explored with reference to creep test results and microstructural modifications and the implications of the observations are discussed.  相似文献   

16.
Research on the high temperature creep behavior of three rapidly solidified Al-Fe-X-Si (where X = Cr, Mn or Mo) dispersion strengthened materials with three different alloying compositions has been conducted. Firstly, microstructural examinations have been carried out on the as-received, thermally treated and tested samples. The microstructure consists of a fine Al matrix embedding small round-shaped Al12(Fe,X)3Si and Al13(Fe,X)4 dispersoids. Grain sizes ranging from 0.85 to 1.45 μm and dispersoid sizes ranging from 45 to 54 nm were observed. Secondly, tensile tests were performed at high temperature from 573 to 823 K at strain rates ranging from 2.5×10−6 to 10−2s−1. The experimental data exhibited high apparent stress exponent, nap, and high activation energy, Qap. The rnicrostructure remained stable and fine after testing. The results are analyzed by means of various models used in the literature.  相似文献   

17.
根据热防护系统的特征载荷, 研究了气凝胶的室温、高温压缩和压缩蠕变性能。研究表明纤维增强SiO2气凝胶的压缩曲线可划分为三个阶段: 线性阶段、屈服阶段和密实化阶段。相比纯气凝胶, 该材料具有较高的强度、良好的断裂韧性。该材料存在明显的室温和高温蠕变行为。室温条件下240 h内的蠕变历程可划分为三个阶段, 在168 h以后蠕变变形量达到稳定状态, 基本不再继续增加。对比试样在试验前、热处理后和蠕变试验后的显微结构发现, 气凝胶基体的密实化是加热后试样收缩和影响气凝胶蠕变性能的主要因素。  相似文献   

18.
Nanoindentation tests of the high nitrogen nickel-free austenitic stainless steel (HNS) were performed with peak load in a wide range of 100–600?mN to investigate the nanoindentation creep deformation behaviours. The results of the nanoindentation creep tests have demonstrated that the load plateaus, creep strain rate and creep stress of the cold-rolled HNS are larger and its creep stress exponent is smaller than the solution-treated HNS. The analysis reveals that the obvious creep deformation behaviour in the cold-rolled HNS arises from the rapidly relaxed dislocation structures in the initial transition regime, while the small creep deformation behaviour of the solution-treatedHNS is mainly attributed to that the stable dislocation structures for the intensive interactions between dislocations.  相似文献   

19.
The steady state creep rate (SSCR) of various microstructures of Ti-24Al-11Nb (a/o) has been determined. SSCR vs. stress and vs. temperature curves were determined to find Qa, apparent creep activation energy, and to investigate n, power law stress exponent. At low stresses, apparent creep activation energies determined for all microstructures were found to be between 106 kJ mol−1 and 156 kJ mol−1, which agrees fairly well with the energy for self-diffusion in alpha titanium, and the energy of interdiffusion on the Al-rich side of the 2 phase in Ti3Al, both having a value of 150 kJ mol−1. In many SSCR vs. stress curves, a slope change was observed in the stress range investigated. As temperature increased, slopes decreased towards unity, suggesting that different creep mechanisms, i.e. dislocation creep and diffusional creep, may be rate-controlling in different stress-temperature regimes.  相似文献   

20.
研究Ti-6Al-3Nb-2Zr-1Mo合金在不同外加应力下的室温压缩蠕变行为,拟合了蠕变曲线,计算出蠕变发生第二阶段的临界值,并对不同应力水平压缩后的合金显微组织进行TEM观察,研究其位错滑移类型.结果表明:室温条件下,Ti-6Al-3Nb-2Zr-1Mo合金压缩蠕变-时间曲线符合时间强化指数模型,该合金发生蠕变第二...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号