首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
介绍了碳纳米管(CNTs)在改性环氧树脂(EP)、酚醛树脂(PF)、双马来酰亚胺树脂(BMI)以及氰酸酯树脂(CE)等热固性树脂方面的应用,综述了EP/CNTs、PF/CNTs、BMI/CNTs、CE/CNTs复合材料的近期研究进展,详细叙述了CNTs对热固性树脂的力学性能、热性能、摩擦性能的改善情况,结合扫描电镜分析结果研究了CNTs在EP和BMI中的分散情况,并指出了热固性树脂/CNTs复合材料存在的问题和应用前景。  相似文献   

2.
采用浓硝酸和浓硫酸改性碳纳米管(CNTs),然后以环氧树脂(EP)为基体、碳纤维双层间隔织物(CFDSF)为增强体制备了EP/CFDSF/CNTs复合材料,研究了改性CNTs含量对EP/CNTs和EP/CFDSF/CNTs复合材料力学性能及电学性能的影响。结果表明,随改性CNTs含量增加,两种复合材料的弯曲强度和缺口冲击强度均先升高后降低,当改性CNTs的含量为2.5份时,两种复合材料的力学性能最好,EP/CFDSF/CNTs复合材料的弯曲强度和缺口冲击强度分别为145.18 MPa和18 kJ/m~2,分别较EP/CNTs复合材料提高了12.5%和18.4%。随改性CNTs含量增加,两种复合材料的体积电阻率降低,当达到渗滤阈值即改性CNTs的含量为2.5份后下降明显,EP/CNTs复合材料的体积电阻率为25.9Ω·cm,而EP/CFDSF/CNTs复合材料的体积电阻率为20.85Ω·cm。  相似文献   

3.
先后利用Fenton试剂和缩水甘油氧丙基硅烷偶联剂(KH560)对碳纳米管(CNTs)进行表面修饰,制备了不同种类的环氧树脂(EP)/CNTs复合材料并对其性能进行了研究。结果表明:CNTs经过Fenton试剂处理后,其表面成功引入羟基,进一步用KH560修饰后成功地引入了环氧基官能团。Fenton试剂的组成可以有效控制羟基基团的数目,并进一步决定环氧基官能团的数目。单独采用Fenton试剂处理或Fenton试剂和KH560共同处理都可以改善CNTs的分散性能,提高EP/CNTs复合材料的玻璃化温度(Tg)和热稳定性能,但后者的处理效果更好。  相似文献   

4.
采用真空辅助喷涂的方法分别制备了含有碳纳米管(CNTs)质量分数1%和3%的CNTs/玻纤(GF)复合材料,采用真空辅助树脂传递模塑(VARTM)方法制备了CNTs/GF/树脂(EP)三元复合材料,并对复合材料的力学性能、耐固体粒子侵蚀磨损性能进行了研究。结果表明:加入质量分数1%,3%CNTs使复合材料的拉伸强度达到79.0,78.0 MPa,相对于纯EP增加了31.7%,30.0%,相对于GF/EP(FRP)复合材料降低了24.1%,25.0%;三元复合材料的弯曲强度达到173.3MPa,160.1 MPa,相对于纯EP增加了72.4%,51.3%,相对于FRP复合材料降低了6.9%,15.7%;耐固体颗粒侵蚀性能(质量损失率)相对于FRP复合材料提高了84.5%,81.1%。  相似文献   

5.
以环氧树脂(EP)为基体,聚乙烯吡咯烷酮(PVP)表面修饰的碳纳米管(CNTs)为增强剂,采用模具浇铸法,制备CNTs/EP纳米复合材料。使用红外光谱(FTIR)、扫描电镜(SEM)、差示扫描量热仪(DSC)、热失重分析仪(TG)、冲击试验机和电子万能试验机对材料的结构和性能进行测试和表征,并分析微观结构和性能之间的关系。结果表明:PVP修饰的CNTs管壁相比原始的CNTs粗糙,两亲性聚合物PVP已经接枝CNTs表面,并且提高CNTs和EP之间的界面结合作用。随着PVP用量的增加,复合材料的冲击强度和弯曲强度有一定程度的提高。含量为0.25%PVP修饰后的CNTs在保证弯曲模量、弯曲强度和热稳定性基本不变的情况下,较好的提高纳米复合材料的韧性和耐热性,其中冲击强度提高59%,Tg提高近20℃,所以其综合性能最优。  相似文献   

6.
碳纳米管材料导热性能的实验研究   总被引:2,自引:0,他引:2  
本文对碳纳米管与环氧树脂(Epoxy-EP)复合材料的导热性能进行了定量的研究,探索了CNTs/EP复合材料的制备方法,运用Hotdisk热常数分析仪研究了CNTs/EP复合材料的导热系数;利用CNTs/EP两相复合材料的导热理论模型得到了室温下单壁碳纳米管(Single-Wall Carbon Nanotubes-SWCNTs)的导热系数为3980 W/(m.K),双壁碳纳米管的导热系数(Double-Wall Carbon Nanotubes-DWCNTs)为3580 W/(m.K),以及多壁碳纳米管(Multi-Wall Carbon Nanotubes-MWCNTs)的导热系数为2860 W/(m.K)。  相似文献   

7.
介绍近年来碳纳米管(CNTs)的有机表面修饰研究进展。通过对CNTs的表面修饰可改善CNTs在有机溶剂中的溶解性及在聚合物基体中的分散性。综述了CNTs改性环氧树脂(EP)纳米复合材料的研究现状,并对今后CNTs改性纳米复合材料的发展方向进行了展望。  相似文献   

8.
白艳  任宝利 《中国塑料》2013,27(5):69-72
分别将纳米三氧化二铝(Al2O3)、纳米二氧化钛(TiO2)、纳米二氧化硅(SiO2)颗粒和碳纳米管(CNTs)填充到环氧树脂(EP)/玻璃纤维(GF)复合材料中,制备了纳米填充EP/GF复合材料,GF的体积含量为30 %。用环块摩擦试验机研究了纳米填充物对EP/GF复合材料的摩擦磨损性能的影响。结果表明,1.0 %(质量分数,下同)的CNTs能够较大幅度地降低复合材料的摩擦因数和磨损率,而纳米Al2O3、纳米TiO2和纳米SiO2颗粒可以明显提高复合材料的耐磨损性能。  相似文献   

9.
碳纳米管增强环氧树脂复合材料研究进展   总被引:1,自引:0,他引:1  
介绍了近年来在碳纳米(管CNTs)的羧基化、胺基化和硅烷化改性及其对CNTs/EP复合材料性能影响等方面的研究进展并,通过分析目前该领域研究中的不足指,出了进一步的研究方向。  相似文献   

10.
王登武  王芳 《中国塑料》2015,29(4):54-57
采用先酸化再空气氧化的方法对碳纳米管(CNTs)进行了纯化处理,并制备了2种环氧树脂(EP)/CNTs导热复合材料。研究了不同含量的CNTs及纯化CNTs对复合材料的导热性能、冲击性能及弯曲性能的影响。结果表明,纯化处理后,CNTs表面的催化剂粒子和无定形碳被去除,得到了纯净CNTs;当纯化CNTs含量为1.5 %时(质量分数,下同),材料的冲击强度和弯曲强度最高,分别为24.95 kJ/m2、127.2 MPa;当纯化CNTs含量为1.5 %时,复合材料的热导率可达1.237 W/(m·℃)。  相似文献   

11.
In this study “core‐shell” structure of carbon nanotube (CNT) nanocapsules, which aimed at toughening poly(lactic acid) (PLA) were designed by a synthetic strategy consisting of two reaction steps. The first step was to produce reactive chemical bond to bridge CNTs and PLA. So coupling agent KH570 was used to modify CNTs (CNTs‐KH570). The second step involved ring open polymerization of lactide (LA). Lactide polymerized into PLA under catalysis and meanwhile grafted onto CNTs via KH570 (CNTs‐KH570‐PLA). Thus, the CNTs nanocapsules were constructed. Fourier transform infrared spectroscopy (FTIR) showed coupling agent KH570 succeeded in linking CNTs and PLA during LA polymerization. In addition, scanning electron microscopy (SEM) and transmission electron microscope (TEM) indicated CNTs dispersed homogeneous in PLA matrix and the compatibility between them was excellent. The mechanical test also suggested the designed nanocapsules had good effect on toughening PLA composites. This research found one economical and simple way to improve PLA mechanical properties and further broaden its application in many fields. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44919.  相似文献   

12.
The thermal properties and mechanical properties are the key factors of phase‐change microcapsules (microPCMs) in energy‐storage applications. In this study, microPCMs based on an n‐octadecane (C18) core and a melamine–urea–formaldehyde (MUF) shell supplemented with O2‐plasma‐modified multiwalled carbon nanotubes (CNTs) were synthesized through in situ polymerization. Meanwhile, two different addition methods, the addition of modified CNTs into the emulsion system or into the polymer system, were compared and examined. Scanning electron microscopy micrographs showed that the microPCMs were spherical and had a broadened size distribution. Fourier transform infrared testing demonstrated that the modified CNTs did not affect C18 coated by MUF resin. The results indicate that the thermal conductivity and mechanical properties of the microPCMs were remarkably improved by the addition of a moderate amount of modified CNTs, but the heat enthalpy and encapsulated efficiency decreased slightly. Moreover, the thermal conductivity and mechanical properties of microPCMs modified with CNTs directly added to the polymer system were superior to those with CNTs added to emulsion system. In particular, when 0.2 g of modified CNTs were added to the polymer system, the thermal conductivity of the microPCMs was improved by 225%, and the breakage rates of the microPCMs at 4000 rpm for 5, 10, and 20 min decreased by 74, 72, and 60%, respectively, compared with that of the microPCMs without modified CNTs. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45269.  相似文献   

13.
化学气相沉积法制备碳纳米管的研究进展   总被引:14,自引:3,他引:14  
从催化剂、碳源气体及反应器的选择等方面综述了化学气相沉积法制备碳纳米管的研究进展 ,讨论了碳纳米管的合成机理。指出催化合成碳纳米管的研究难点在于管径的有效调控和大批量生产 ,今后的研究方向应为单层碳纳米管的有效合成  相似文献   

14.
《Ceramics International》2017,43(5):4663-4669
Three component suspensions of hydroxyapatite (HA), chitosan and CNTs were prepared in ethanol base solution (15 vol% water and 0.05 vol% acetic acid). The adsorption of HA nanoparticles on CNTs was investigated by FTIR and SEM analysis. It was found that HA nanoparticles are adsorbed on CNTs via chemical bonding between -NH2 groups of chitosan (adsorbed on their surface) and -COOH groups of CNTs. Current density as well as kinetics of EPD was studied at 60 V. It was found that current density increases or remains nearly constant during EPD due to the rise in water electrolysis as deposit grows on the substrate. Deposition weight against EPD time showed a linear trend due to the absence of any voltage drop over the deposit during EPD. The incorporation of chitosan and CNTs in the microstructure of coatings was confirmed by TG/DTA and SEM analysis. CNTs exhibited high efficiency in reinforcing the microstructure of coatings and preventing from their cracking. CNTs incorporation in the coatings improved their mechanical properties (adhesion strength, hardness and elastic modulus) and corrosion resistance.  相似文献   

15.
碳纳米管预处理及化学复合镀研究现状   总被引:4,自引:0,他引:4  
碳纳米管因其优异的力学、物理性能,是一种理想的复合材料增强体,但由于它长径比大,反应活性低,表面曲率大,导致其极易团聚,不易分散,使其复合镀较困难。讨论了Ni-P-碳纳米管化学复合镀层沉积机理与影响因素(包括镀液成分、pH值、施镀温度及表面活性剂)。阐述了碳纳米管的纯化机理。综述了碳纳米管的各种纯化、分散方法及其所得到的纯化和分散效果。介绍了利用碳纳米管提高Ni-P化学复合镀层的抗腐蚀性能和耐磨性能的研究现状,并探讨了碳纳米管复合镀的发展与应用前景。  相似文献   

16.
Embedding carbon nanotubes (CNTs) in load-bearing composite laminate hosts to turn them into nano-laminates is a rapidly emerging field and has tremendous potential in enhancing the mechanical performance of the host laminates. This state-of-the-art review intends to provide a physical insight into the understanding of the enhancing mechanisms of the processed and controlled CNTs in the nano-laminates. It focuses on four aspects: (1) physical characteristics of CNTs, including CNT length, diameter, weight percentage and surface functionalization; (2) processing and control techniques of CNTs in the fabrication of nano-laminates, including distribution, dispersion and orientation controls of CNTs; (3) mechanical properties along with their testing methods, including tension, in-plane compression, in-plane and interlaminar shear (ILS), flexure, mode I and mode II fracture toughness as well as compression-after-impact (CAI), ballistic protection and fatigue; and (4) CNT–matrix load transfer and enhancing mechanisms along with a few major governing factors. The selective and uniform production of CNTs with specific dimensions and physical properties has yet to be achieved on a consistent basis. Moreover, the processing details of CNTs vary very significantly among different researchers so that the processed CNTs share little common characteristics. There is little control over the CNT orientations in most fabrication processes of the nano-laminates except for some cases associated with chemical vapor deposition (CVD). There are only two reports on in-plane compression and there is only one on in-plane shear. For reinforcement-dominated mechanical properties such as longitudinal tension and flexure, there was little enhancement reported. However, the substantial enhancement in in-plane compression strength was also reported. For matrix-dominated mechanical properties, such as transverse tension, in-plane shear, ILS strength and mode I and mode II fracture toughness, a significant enhancement, albeit with substantially varying degrees, was reported for ILS strength and mode I and mode II fracture toughness values. Meanwhile, the lack of consistent characterization of those properties was also noticeable. There is little established understanding of the enhancing mechanisms in nano-laminates.  相似文献   

17.
Soluble carbon nanotubes (CNTs) have shown promise as materials for adsorption of environmental contaminants such as Bisphenol A (BPA), due to the high adsorption capacity and strong desorption hysteresis of BPA on CNTs. The adsorption of BPA to CNTs may change the properties of both BPA and CNTs, and induce different toxicity to human and living systems from that of BPA and CNTs alone. Herein, we report that oral exposure of BPA/MWCNT–COOH (carboxylated multi-walled carbon nantubes) adduct to mice during gestation and lactation period decreased the male offspring reproductive toxicity compared with those induced by BPA alone. The adduct decreased malondialdehyde (MDA) level in testis and follicle-stimulating hormone (FSH) in serum, but increased the level of serum testosterone in male offspring in comparison to BPA alone. Our investigations broadened the knowledge of nanotoxicity and provided important information on the safe application of CNTs.  相似文献   

18.
近年来,碳纳米管(CNTs)在传统胶凝材料中的应用愈来愈受到人们的重视。通过添加适量的CNTs,可以使胶凝材料的一些性能得到有效改善。本文综述了国内外有关CNTs在水泥基材料中的应用研究进展,主要探讨了CNTs对水泥基材料的力学性能、耐久性及微观结构的影响,掺加活性物质对CNTs/水泥基复合材料性能的影响,并且总结了当前研究中所存在的一些问题,为今后的研究前景提出了一些建议。  相似文献   

19.
To improve the dispersibility of carbon nanotubes (CNTs), poly(vinylferrocene-co-styrene) (poly (Vf-co-St)), was grafted onto the surface of CNTs by a ligand-exchange reaction. Poly(Vf-co-St) was obtained by a radical copolymerization reaction using styrene and vinylferrocene as the monomers. The vinylferrocene was synthesized from ferrocene via a Friedel-Crafts acylation. The molecular weight, molecular weight distribution, and amount of Vf in the poly(Vf-co-St) were 1.32 × 104, 1.69 and 17.6% respectively. The degree of grafting of the copolymer onto the CNTs surface was calculated from thermogravimetric analysis and varied from 27.1% to 79.7%. The addition of the poly(Vf-co-St) greatly promoted the dispersibility of the modified CNTs in anhydrous alcohol. The electrical conductivity of composites prepared from the polymer-grafted CNTs and copolymer (acrylonitrile, 1,3-butadiene and styrene, ABS) strongly depended on the degree of grafting. These results show that the amount of polymer grafted onto the surface of CNTs can be controlled and that the electrical properties of composites prepared with these grafted polymers can be tuned.  相似文献   

20.
Carbon nanotubes (CNTs) can be effectively dispersed and functionalized by wrapping with long single-stranded DNA (ssDNA) synthesized by asymmetric PCR. The ssDNA-CNTs attached on surface of glass carbon electrode made it possible for electrochemical analysis and sensing, which was demonstrated by reduction of H2O2 on hemoglobin/ssDNA-CNTs modified electrodes. This research showed the potential application of DNA-functionalised CNTs in construction of future electrochemical biosensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号