首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
研究了用3-苯基-4-苯酰-5-异(口恶)唑酮(HPBI)氯仿溶液中萃取La(Ⅲ)、Ce(Ⅲ)、Eu(Ⅲ)、Th(Ⅳ)和U(Ⅵ)的性能。提出了萃取机理并鉴别了萃取的物质形态。计算了每种体系的萃取常数.此体系已用于从U(Ⅵ)、La(Ⅲ)、Ce(Ⅲ)和Eu(Ⅲ)中分离出Th(Ⅳ)。与1-苯基-3-甲基-4-苯酰-5-吡唑啉酮(HPMBP)和噻吩甲酰三氟丙酮(HTTA)体系所得的萃取常数的比较结果说明,用HPBI萃取这类金属物质比用HPMBP和HTTA好.  相似文献   

2.
研究了磷酸三异戊酯(TiAP)、磷酸三仲丁酯(TsBP)的正十二烷溶液从硝酸介质中萃取U(Ⅵ)、Th(Ⅳ)的性能及Th(Ⅳ)的萃取容量,并在相同条件下与磷酸三丁酯(TBP)的萃取性质进行了比较。结果表明:TiAP对Th(Ⅳ)、U(Ⅵ)的萃取性能与TBP相近,相同酸度情况下,分配比均略高于TBP;TsBP萃取U(Ⅵ)的分配比高于TBP,而萃取Th(Ⅳ)的分配比低于TBP。随着水相硝酸浓度的增大,两种萃取剂对Th(Ⅳ)、U(Ⅵ)的萃取分配比增大,但在较高酸度下则相反;同时比较了TiAP、TsBP、TBP对Th(Ⅳ)的萃取容量。  相似文献   

3.
1,10-双(1′-苯基-3′-甲基-5′-氧代吡唑-4′-基)癸二酮-[1,10](以下简称H_2A)是最近合成的一种β-双酮螯合剂,它比HPMBP多一倍螯合功能团,在适当的条件下能与钍(Ⅳ)生成比较稳定的螯合物,并能被氯仿萃取。为此,我们研究了H_2A与钍(Ⅳ)的萃取行为,也试验了Th(Ⅳ)与U(Ⅵ),La(Ⅲ),Ce(Ⅲ),Pr(Ⅲ),Nd(Ⅲ),Sm(Ⅲ),Eu(Ⅲ),Tb(Ⅲ),Er(Ⅲ)和Yb(Ⅲ)萃取分离的可能性。  相似文献   

4.
N,N-二(1-甲基-庚基)乙酰胺萃取U(Ⅵ)和Th(Ⅳ)的研究   总被引:3,自引:1,他引:2  
以N,N-(1-甲基-庚基)乙酰胺(DMHAA)为萃取剂,煤油作稀释剂,研究了水相硝酸浓度、盐析剂浓度、萃取剂浓度对U(Ⅵ)和Th(Ⅳ)萃取分配比的影响,并对其萃取机理进行了初步探讨。研究结果表明。DMHAA可以有效地从硝酸溶液中萃取UO2^2 ,和Th(Ⅳ)。  相似文献   

5.
本文在带有阴阳极的恒界面池中研究了HNO_3-N_2H_5NO_3(H_2O)/UO_2(NO_3)_2-HNO_3(30%TBP-煤油)体系在U(Ⅵ)电解还原过程中的U(Ⅵ)反萃和U(Ⅳ)萃取动力学。这是U(Ⅵ)电还原反萃动力学研究的第二步。根据实验结果和数据处理,得到U(Ⅵ)反萃和U(Ⅳ)萃取过程的表观活化能分别为36.02kJ/mol和21.13kJ/mol;U(Ⅵ)反萃和U(Ⅳ)萃取速率随两相搅拌速率的增大而增大;U(Ⅵ)反萃和U(Ⅳ)萃取过程均由扩散控制。随着阴极电位的降低,U(Ⅵ)反萃和U(Ⅳ)萃取速率均增大。  相似文献   

6.
铀(Ⅵ)偶氮胂Ⅲ络合物溶液是在十二烷基辛基甲基苄基氨化铵存在条件下,用氯仿、甲苯、1,2-二氯代乙烷及丁醇等萃取。用氯仿萃取的络合物组成为1:1,最大吸收处的波长为655mμ,克分子消光系数为5.6×10~4。应用上述萃取法的条件:pH0.8—1.2,偶氮胂Ⅲ浓度为1.50×10~(-4)M,萃取剂为5%的十二烷基辛基甲基苄基氯化铵的氯仿溶液。铀(Ⅵ)在有机相的浓度为0.2—1.2×10~(-5)M时,符合比耳定律。 Ni(Ⅱ)、Cu(Ⅱ)、Zn(Ⅱ)、Mn(Ⅱ)、Cd(Ⅱ)、Al(Ⅲ)、Cr(Ⅲ)、Fe(Ⅲ)、Zr(Ⅳ)、V(Ⅴ)、W(Ⅵ)等离子存在时,影响很小。Th(Ⅳ)对U(Ⅵ)的萃取有影响。但本萃取法的灵敏度比萨文利用二苯胍盐的丁醇萃取法大约提高了一倍。  相似文献   

7.
曹正白  包亚之 《核技术》1993,16(6):380-384
对二(2-乙基己基)亚砜(DEHSO)和磷酸三丁酯(TBP)萃取Th、U的性能进行了比较,研究了水相HNO_3浓度、萃取剂浓度、温度等因素对萃取Th、U的影响。DEHSO与U、Th和HNO_3形成的萃合物为UO_2(NO_3)_2·2DEHSO,Th(NO_3)_4·2DEHSO和HNO_3·DEHSO。在本实验浓度条件下测得萃取U、Th及NHO_3反应的平衡常数为14.9、0.027、0.13,U、Th萃取反应的热焓为-44.30和-42.50kJ/mol。同时试验了有机相中U(Ⅵ)和Th(Ⅳ)的反萃。  相似文献   

8.
本文叙述了溶剂种类、酸度和冠醚浓度诸因素对二环己基18冠6(DCH 18 C 6)萃取铀、钚等元素的影响,着重研究了常量铀的萃取行为。结果表明,1,1,2—三氯乙烷作溶剂时,DCH18 C 6对微量铀或常量铀均能萃取。在硝酸体系形成的萃合物中,Pu(Ⅳ)和U(Ⅵ)与二环己基18冠6的分子比分别为2和1。DCH 18 C 6-1,1,2—三氯乙烷能够从含有U(Ⅵ)和U(Ⅳ)的3—5 M HCl溶液中单独萃取U(Ⅵ)而不萃取U(Ⅳ)。  相似文献   

9.
酰胺化合物对U(Ⅵ),Eu(Ⅲ),Sr(Ⅱ)和Fe(Ⅲ)的萃取   总被引:9,自引:4,他引:5  
研究了酰胺荚醚(PAⅡ)和二(1-甲基庚基)乙酰胺(N-503)有硝酸溶液中对U(Ⅵ),Eu(Ⅲ),Sr(Ⅱ)和Fe(Ⅲ)的萃取。结果表明,PAⅡ对U(Ⅵ),Eu(Ⅲ),Sr(Ⅱ)均有良好的萃取性能,N-503只萃取U(Ⅵ),两种萃取剂对Fe(Ⅲ)均不萃取。  相似文献   

10.
使用联苯酸(用氢氧化钠中和),在电动势为-1.0伏(滴汞电极,参比标准甘汞电极)下,Th(Ⅳ)用电流滴定法测定。测定钍的范围为8.0—60.0毫克/100毫升,误差为±0.5%。Ce(Ⅳ),Zr(Ⅳ),La(Ⅲ),U(Ⅳ),U(Ⅵ)等许多外来离子,甚至在过量情况下都不干扰,但是Ti(Ⅳ)离子却有干扰。本法既快又具有选择性,已用于独居石砂中Th(Ⅳ)的测定。  相似文献   

11.
现在广泛地采用偶氮胂Ⅲ试剂分光光度法测定Th(Ⅳ)和U(Ⅵ)。但是当这两个元素的比例不大时直接测定其中的一个元素往往是很困难的。U(Ⅵ)的干扰影响在一定范围内能用选择测定条件的办法加以消除。Th(Ⅳ)的干扰影响实际上连少量Th(Ⅳ)的存在也无法  相似文献   

12.
用低浓缩铀靶代替高浓缩铀靶辐照进行~(99)Mo的生产是一个必然的趋势,但采用低浓缩铀靶辐照后裂变体系的组成可能发生改变,从而影响~(99)Mo的分离提取过程。为此,本工作以低浓缩铀辐照后溶解的模拟溶液为研究对象,在U(Ⅵ)大量存在的情况下,考察了二(2-乙基己基)磷酸酯(P_(204))从硝酸体系中萃取Mo(Ⅵ)的行为,重点研究了不同Mo(Ⅵ)浓度下萃取时间、萃取剂浓度、硝酸浓度、温度、其他主要元素(Cs(Ⅰ),Zr(Ⅳ),Y(Ⅲ),Nd(Ⅲ),Al(Ⅲ))等因素对萃取的影响。实验结果表明,不同Mo(Ⅵ)浓度下,P_(204)-磺化煤油对硝酸体系中Mo(Ⅵ)的萃取行为相似;在相比为1时,φ=10%P_(204)-磺化煤油对Mo(Ⅵ)即有较好的萃取效果;硝酸浓度不大于2mol/L时分配比随着硝酸浓度的增加而减少,但硝酸浓度进一步增大时对萃取无显著影响;萃取反应的ΔH和ΔG均为负值,表明该萃取是一个常温下能自发进行的放热反应;溶液中U(Ⅵ)和本工作考察的其它主要元素存在及其浓度的改变不会显著影响P204对Mo(Ⅵ)的萃取行为,且采用P_(204)可将Mo(Ⅵ)与Y(Ⅲ)、Nd(Ⅲ)、Al(Ⅲ)选择性地分离。  相似文献   

13.
研究了酰胺荚醚N,N,N′,N′-四丁基-3-氧-戊二酰胺(TBOPDA)和N-503(N,N′-二乙基庚酰胺)以及TBOPDA与N-503的组合萃取剂在硝酸介质中对U(Ⅵ)、Pu(Ⅳ)、Am(Ⅲ)、Eu(Ⅲ)和其他一些金属离子的萃取行为,稀释剂为40%正辛醇-煤油。用0.075mol/LTBOPDA+0.5mol/LN-503/40%辛醇-煤油为萃取剂,从模拟高放废液中分离U(Ⅵ)、Pu(Ⅳ)、Am(Ⅲ)和Eu(Ⅲ)的微型混合澄清槽实验结果表明在A槽,大于99.99%的U(Ⅵ)、Pu(Ⅳ)、Eu(Ⅲ)和Am(Ⅲ)被萃入有机相;在R1槽,U(Ⅵ)被定量反萃,83%的Pu(Ⅳ)和36%的Am(Ⅲ)被反萃入水相;在R2槽中残留的Pu(Ⅳ)、Am(Ⅲ)和Eu(Ⅲ)可被定量反萃下来。该流程可有效提取高放废液中的锕系元素,并可对其进行组分离。  相似文献   

14.
本文研究了6种不同结构的烷基膦酸二烷基酯对于U(Ⅵ),Pu(Ⅳ)的萃取行为,分别用离子交换法和萃取法测定了1.0mol/l HNO_3中U(Ⅵ)和Pu(Ⅳ)的络合度,求出了不同温度下各种萃取剂萃取U(Ⅵ)和Pu(Ⅳ)的表观平衡常数以及萃取过程的热力学函数△H,△G,△S。结果表明,不同取代基的萃取剂在萃取能力上的差别主要来自取代基的空间位阻效应,具有一定空间位阻的萃取剂可以在一定程度上改善U(Ⅵ)和Pu(Ⅳ)的萃取分离。  相似文献   

15.
以顺丁烯二酸酐修饰的β-环糊精(β-CD)、丙烯腈(AN)和顺丁烯二酸酐(MAH)为单体,合成了功能化三元共聚物水凝胶β-CD/MAH-co-AN-co-MAH(CD-AN-MAH),进一步肟化得到β-CD/MAH-co-AO-co-MAH(CD-AO-MAH)。为了探索两种三元共聚物水凝胶在一定条件下对U(Ⅵ)、Th(Ⅳ)的吸附特性,研究了酸度、时间和温度对吸附过程的影响,进而观察U(Ⅵ)和Th(Ⅳ)的不同的吸附行为;结合动力学拟合、吸附等温线和热力学拟合解释U(Ⅵ)和Th(Ⅳ)与两种新材料间的相互作用机理。结果表明:一定酸度条件下,两种三元共聚物水凝胶对U(Ⅵ)和Th(Ⅳ)的吸附均是快速的动力学过程,服从准二级动力学模型;肟化后的CD-AO-MAH对U(Ⅵ)的吸附效果优于肟化前的CD-AN-MAH;且两种三元共聚物水凝胶对于U(Ⅵ)的吸附均优于对Th(Ⅳ)的吸附。再一次证明肟基对U(Ⅵ)有较好的选择性,肟化后的三元共聚物水凝胶可以做为选择性分离U(Ⅵ)的潜在材料。  相似文献   

16.
以顺丁烯二酸酐修饰的β-环糊精(β-CD)、丙烯腈(AN)和顺丁烯二酸酐(MAH)为单体,合成了功能化三元共聚物水凝胶β-CD/MAH-co-AN-co-MAH(CD-AN-MAH),进一步肟化得到β-CD/MAH-co-AO-co-MAH(CD-AO-MAH)。为了探索两种三元共聚物水凝胶在一定条件下对U(Ⅵ)、Th(Ⅳ)的吸附特性,研究了酸度、时间和温度对吸附过程的影响,进而观察U(Ⅵ)和Th(Ⅳ)的不同的吸附行为;结合动力学拟合、吸附等温线和热力学拟合解释U(Ⅵ)和Th(Ⅳ)与两种新材料间的相互作用机理。结果表明:一定酸度条件下,两种三元共聚物水凝胶对U(Ⅵ)和Th(Ⅳ)的吸附均是快速的动力学过程,服从准二级动力学模型;肟化后的CD-AO-MAH对U(Ⅵ)的吸附效果优于肟化前的CD-AN-MAH;且两种三元共聚物水凝胶对于U(Ⅵ)的吸附均优于对Th(Ⅳ)的吸附。再一次证明肟基对U(Ⅵ)有较好的选择性,肟化后的三元共聚物水凝胶可以做为选择性分离U(Ⅵ)的潜在材料。  相似文献   

17.
在吸附十二烷基硫酸铵改进的Separon SGXC18填充玻璃柱(3mm×150mm)上,用离子对液相色谱法使U(Ⅵ)与Th(Ⅳ)、Zr(Ⅳ)、Al(Ⅲ)、Fe(Ⅲ)、镧系元素和其他离子分离后,可以有效地测定0.3—1.0mol/L范围的U(Ⅵ)。用异箱洗脱法或pH或浓度梯度洗脱法,采用2-羟基-2-甲基丙酸铵或柠檬酸铵溶液,可以在分析交换柱上直接从酸性水溶液预富集微量铀并与Th、Zr、Al,Fe、镧系元素和其他元素分离,富集因子约为100,回收率为98±8%。利用pH2.7的0.1mol/L甲酸盐缓冲液中后柱与25μmol/L偶氮砷Ⅲ的衍生作用来检测和定量。  相似文献   

18.
为开发Pu(Ⅳ)的高选择性萃取剂,实现废液中微量钚的回收,以正十二烷作为稀释剂,研究2,2′-((4-乙氧基-1,2-亚苯基)双(氧基))双(N,N-双(2-乙基己基)乙酰胺)(4-EthoxyBenzoDODA)对U(Ⅵ)、Pu(Ⅳ)的萃取行为,以及两相混合振荡时间、水相硝酸浓度和有机相萃取剂浓度对U(Ⅵ)、Pu(Ⅳ)萃取分配比的影响。硝酸的萃取实验结果表明,4-EthoxyBenzoDODA(KH=0.14)比BenzoDODA(KH=0.44)碱性弱,更有利于选择萃取离子势较强的Pu(Ⅳ)。对U(Ⅵ)、Pu(Ⅳ)的萃取实验表明,Pu(Ⅳ)对U(Ⅵ)的分离因子最高可达6.9,Pu(Ⅳ)对Eu(Ⅲ)的分离因子最高可达223。采用斜率法分析了4.0 mol/L HNO3浓度下U(Ⅵ)萃合物的组成,主要为UO2(NO3)2·L)、Pu(Ⅳ)(Pu(NO3)4·L和Pu(NO3)4·L2共存。使用硝酸肼或者硝酸羟胺等还原反萃剂,可以将负载有机相中98%的Pu反萃至水相中。结果表明,4-EthoxyBenzoDODA对Pu(Ⅳ)具有一定的选择性。  相似文献   

19.
利用文献报道的Th(NO3)4-UO2(NO3)2-HNO3-H2O/30%TBP-正十二烷体系各组分的分配比实验数据对现有的分配比模型进行分析和比对,提出了一个计算该体系各组分分配比的新模型。利用34组实验数据对新模型进行了验证,符合情况良好。计算结果表明,本文提出的模型明显优于原模型,可作为Th(NO3)4-UO2(NO3)2-HNO3-H2O/30%TBP-正十二烷萃取体系中Th(Ⅳ)、U(Ⅵ)和HNO3萃取行为计算机模拟的基础。模型建立的条件为:温度,25℃;U(Ⅵ)浓度,0~100g/L;Th(Ⅳ)浓度,0~232g/L;硝酸浓度,0~4.5mol/L。  相似文献   

20.
1.測定了在不同硝酸酸度下La,Ce(Ⅲ、Ⅳ),Pr,Nd,Sm,Gd,Dy,Ho,Y,Er,Yb,Th(Ⅳ)等的0.05M硝酸盐溶液被1MHDBP-CCl_4萃取时的萃取率和上述各对希土元素間的分离因数。2.三价希土元素的萃取率均随硝酸酸度的增加(从0至6N)而下降;而四价铈的萃取率較高,并随硝酸酸度的增加(从1至11N HNO_3)而緩慢地上升;钍在0.2至9.1N HNO_3范围內均全部被萃取。3.在不同硝酸酸度下的萃取率-原子序图属轉折变化,卽萃取率随原子序的增大而增大,在增大的过程中发生較明显而突出的轉折。钇位于重镧系元素部分的Ho和Er之間。4.大部分元素对之間的分离因数(β)均随硝酸酸度的增大而下降。在較低的酸度下,有些分离因数比用磷酸三丁酯时还高一些,故有可能在較低的酸度下利用HDBP作萃取剂自铈族希土中分离四价铈和钍,或用于分离β值較大的几对希土元素,或将希土分为铈族和钇族。实驗表明,經一次萃取,在水相中可获得几乎不含钇族希土的铈族希土。5.为了探求分离铈的条件,較系統地研究了用HDBP-CCl_4萃取Ce(Ⅲ、Ⅳ)时HDBP浓度,Ce(Ⅲ、Ⅳ)浓度,在硝酸、硫酸或两者的混合酸介貭中等不同因素对萃取的影响。結果表明,当酸度为3.59N HNO_3时,HDBP-CCl_4浓度在0.5—1M內Ce(Ⅲ)的萃取率約为零,而Ce(Ⅳ)的萃取率仍很高,故在此HDBP浓度范围內有可能使Ce(Ⅲ)和Ce(Ⅳ)彼此分离。在硝酸介貭中(3.59NHNO_3)萃取时,Ce(Ⅳ)的飽和浓度約为83克CeO_2/升1M HDBP-CCl_4(27℃);而在混合酸介貭中(3.8N HNO_3+H_2SO_4,当量比HNO_3/H_2SO_4=1)約为60克CeO_2/升1M HDBP-CCl_4(26℃)。从硫酸介貭中萃取Ce(Ⅳ)时,加入少量硝酸可显著改善分层情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号