共查询到18条相似文献,搜索用时 62 毫秒
1.
系统研究了La0.8-xPrxMg0.2Ni3.8和La0.8-xPrxMg0.2Ni3.2Al0.2Co0.4(x=0, 0.15, 0.3, 0.4)两组储氢合金的相结构与电化学性能。相结构分析表明,合金主要由Pr5Co19、Ce5Co19、CaCu5型物相组成。随着x的增加,合金中A5B19(Pr5Co19+Ce5Co19)型物相逐渐增多,同时各物相的晶胞参数(a, c)和晶胞体积(v)均减小。Al元素的加入有利于CaCu5型物相的形成。电化学测试表明, A5B19型相合金具有较好的电化学循环稳定性,Al、Co元素的加入有利于A5B19型相合金电极的电化学循环稳定性 相似文献
2.
球磨改性处理对Ti46V44Fe10合金相结构和吸放氢性能的影响 总被引:2,自引:0,他引:2
研究了不同条件下机械球磨改性处理对Ti46V44Fe10储氢合金相结构和吸放氢性能的影响.X射线衍射及扫描电镜分析表明:Ti46V44Fe10铸态合金由单一的体心立方(BCC)结构的固溶体组成;经过1 h的干法球磨(未添加四氢呋喃THF)后,合金中出现了微量的α-Ti第二相,主相晶胞体积减小,合金颗粒明显减小并发生团聚;经过0.5、1、20 h的湿法球磨(添加THF)后,合金中分别出现了含量不等的α-Ti第二相,主相晶胞体积逐渐减小,颗粒尺寸明显减小.储氢性能测试表明:球磨改性处理能有效地改善合金的活化性能,活化次数由球磨前的4次降至球磨后的1~2次;短时间(0.5 h,1 h)湿磨还能改善Ti46V44Fe10合金的吸放氢容量;但1 h干磨和20 h湿磨则会明显降低合金的吸放氢容量. 相似文献
3.
V-Ti-Cr-Fe合金的储氢性能研究 总被引:5,自引:0,他引:5
研究了V(30%)-Ti(15%~55%)-Cr(7%~43%)-Fe(2%~18%)(原子分数,下同)四元合金的储氢性能。结果表明:V-Ti-Cr-Fe四元合金的吸氢量与有效吸氢量主要由Ti/(Cr+Fe)比决定,当Ti/(Cr+Fe)=1时,合金具有最好的吸放氢性能。随着Ti/(Cr+Fe)比升高,合金的晶格常数增大,氢化物的生成焓增大,放氢平台压力降低。在298K时,V30Ti35Cr25Fe10合金的吸氢量达到3.6%(质量分数,下同),有效吸氢量达到2.0%。 相似文献
4.
TiV1.35Cr1.35-x.Mnx(x=0~0.45)合金的相结构及储氢特性 总被引:5,自引:1,他引:5
系统研究了TiV1.35Cr1.35-x.Mnx(x=0,0.15,0.25,0.35,0.45)合金的相结构及储氢性能。XRD分析表明,所有合金均为体心立方(b.c.c.)结构的单一固溶体相,其晶胞常数随Mn含量的增加而逐渐减小。储氢性能测试表明,用Mn部分取代Cr后,合金的活化性能变差,25℃最大吸氢量有所下降,但合金的吸放氢压力滞后减小,放氢压力平台变得平坦,100℃有效放氢量和放氢率也随着Mn含量的增加先升后降,并在x=0.35时达到最大值。 相似文献
5.
综述了储氢合金P-T-C曲线的主要测试方法一放电法,容量法和重量法。分别介绍了它们的测试机理,实验过程和操作步骤,阐明了它们在测试合金储氢量方面的优缺点。最后提出了今后储氢合金吸氢量测试的发展方向。 相似文献
6.
近年来 ,具有大容量的新型储氢材料受到广泛关注。D0 1 9-Ti3Al合金由于质轻和超过 3 %的吸氢容量而成为具有储氢潜质的合金之一。然而 ,Ti3AlHX 合金由于稳定性好 ,即吸氢温度太高而无法实际应用。这就使得降低吸氢温度变得必要和重要起来。最近 ,日本学者S .ManO通过Ni替换Ti75-XAl2 5MX (X =15 %和 2 5 % )合金中的合金元素 ,研究了Ni元素在吸氢前后对Ti3Al合金晶体结构的影响 ,同时分析了吸氢含量和放氢温度的变化。实验用材料选用氩气保护下电弧熔炼的Ti75-XAl2 5MX (X =0~ 2 5mol% )合金 ,经过真空下的 10 73K/180h/3 0… 相似文献
7.
Zr含量对(Ti-Cr)45-xV55Zrx(x=1~7)合金微结构及储氢性能的影响 总被引:6,自引:0,他引:6
系统研究了Zr含量对(Ti-Cr)45-xV55Zrx(x=1,3,5,7;Ti/Cr=0.7~0.75)合金微结构及储氢性能的影响。XRD及SEM分析表明,当Zr含量x=1时,合金由体心立方(bcc)结构的钒基固溶体主相和微量α-Zr第二相组成;当Zr含量增至x=3~7时,合金由bcc钒基固溶体主相和α-ZrCr2第二相组成。储氢性能测试表明,随着Zr含量的增加,合金的活化性能得到改善:室温最大吸氢量和80℃有效放氢容量均先增后降,并在x=5时达到最高值:P.C-T曲线滞后减小,平台倾斜度增大。在所研究的合金中,(Ti-Cr)40V55Zr5合金的综合性能最佳,经2次吸放氢循环就活化,室温最大吸氢量可达403ml/g,80℃有效放氢容量达到230ml/g。 相似文献
8.
研究了V含量由5at%升高到35at%时,Ti-V-Cr储氢合金组织、相结构及储氢性能的变化.SEM及XRD结果显示:V含量为5at%的Ti-V-Cr合金由Cr1.97Ti1.07相和Cr2Ti相及很少量的Ti相组成;V含量为10at%的Ti-V-Cr合金除了包含前述的3相外还出现了一定量的V基bcc固溶体相;而V含量为35at%的Ti-V-Cr合金转变为以V基bcc固溶体为主相的固溶体储氢合金.随着V含量的升高和组织结构的变化,Ti-V-Cr合金最大吸氢量升高,放氢率也增大,但是吸氢速率显著减小,活化性能变差.室温下,V含量为35at%的合金具有最大的吸氢量并且放氢率也最高,最大储氢量和放氢率分别是2.86%(质量分数)和61%. 相似文献
9.
系统研究了Ti17Cr23V55-xZr5Fex(x=11~16)合金的相结构以及储氢特性。XRD及SEM分析表明,所有合金的主相均为体心立方(bcc)结构的钒基固溶体,并含有σ-FeCr和Cr2Zr等第二相;随着Fe含量的增加,合金中的bcc主相含量和晶胞体积逐渐降低,σ-FeCr相含量逐渐增多,而Cr2Zr相含量几乎恒定。储氢性能测试表明,该系列合金的活化性能和动力学性能都很好,在20℃和4MPa初始氢压条件下首次吸氢即可活化,并且无需氢化孕育期就能快速吸氢。当Fe含量从x=11增加至x=16时,合金的室温最大吸氢量从268ml/g逐渐降低至25lml/g,80℃有效放氢量从153ml/g逐渐降低至137ml/g。研究表明,为了改善合金的有效储氢能力,必须消除合金中不吸氢的σ-FeCr相或者抑制σ-FeCr相的生成。 相似文献
10.
快凝合金Zr(Ni0.55Mn0.3V0.1Cr0.05)2.1的相结构与储氢性能 总被引:2,自引:0,他引:2
在快冷(冷却速度10^5-10^6K/s)Zr(Ni0.55Mn0.3V0.1Cr0.05)2.1合金中观察到一种高温条件下丰碑 纳米晶C14Laves相,其丰度随冷凝速度下降明显减少。 相似文献
11.
研究了V40-Fe8-Ti-Cr(Ti/Cr=0.95~1.20) 四元合金的结构及吸放氢性能.结果表明:不同Ti/Cr比的合金均为bcc单相结构,随着Ti/Cr比的降低,合金的晶格常数降低,平台压升高,吸氢量降低,放氢量先增加后降低;当Ti/Cr为1时,得到合金V40Ti26Cr26Fe8在298 K下具有最大的放氢量2.4%(质量分数),平台压为0.24 MPa.通过计算得到V40Ti26Cr26Fe8的焓变ΔH和熵变ΔS分别为-39.6 kJ·mol-1H和-140.3 J·mol-1·K-1,在423 K下的放氢平台压力可达27.5 MPa. 相似文献
12.
用感应熔炼的方法制备了AB_3型La-Mg-Ni系稀土贮氰电极合金,采用X射线衍射、Sievert型测试仪、三电极测试体系研究了合金的相结构、吸氢性能、电化学性能.X射线衍射分析结果表明,AB_3型La-Mg-Ni系稀土贮氢电极合金均南(La,Mg)Ni,相、(La,Mg)_2Ni_7相及少量杂质相组成,为多相结构;贮氢性能实验研究表明,具有PuNi_3结构的LaNi_3,型合金的吸氧量高于具有CaCu_5结构的LaNi_5型合金. 相似文献
13.
系统研究了TiV2.1Nix(x=0.2,0.3,0.4,0.5,0.6)贮氢合金的相结构及电化学性能。XRD及SEM分析表明:合金均由体心立方(bcc)结构的V基固溶体主相和TiNi基第二相组成;随着Ni含量x的增加,合金中V基固溶体主相的相含量和晶胞参数逐渐减小,TiNi基第二相含量逐渐增多,且当x≥0.4时,TiNi基第二相组织沿主相晶界形成明显的三维网络状结构。电化学测试表明:随着x的增加,合金的高倍率放电性能及循环稳定性均得到显著改善;但当x从0.4增加到0.6时,合金的活化性能变差,最大放电容量降低。在研究的合金中,TiV2.1Ni0.4表现出较好的综合性能。 相似文献
14.
讨论了TiMn0.85Cr0.35V0.3合金的活化性能和吸放氢性能。活化性能的结果表明:合金表面氧化层的形成是影响合金活化的重要因素。空气中暴露30d的TiMn0.85Cr0.35V0.3合金粉,在P=1MPa,r=293K下,经几次活化循环后即可基本完全活化。PCT结果表明:退火处理可明显改善该合金的储氢性能。在1223K下退火6h的该合金在273K时的有效放氢量Ce、吸氢平台压力Pa和放氢平台压力Pd分别为1.55%(质量分数)、0.141MPa和0.112MPa。符合作为燃料电池供氢源的应用要求。 相似文献
15.
采用X射线粉末衍射和Rietveld全谱拟事分析,详细地研究了Zr(Mn1-xNix)2(x=0.40~0.75)三元Laves相贮氢合金中形成Zr-Ni相的类型及其晶体结构。实验结果表明:Zr-Mn-Ni合金中出现的Z4-Mn-Ni合金中出现的Zr-Ni相包括ZrNi、Zr9Ni11和Zr7Ni103类,r-Ni相类型与合金中的Ni含量有关。其中,ZrNi相在x=0.40~0.50范围内出现,Z 相似文献
16.
La-Mg-Ni系AB3型贮氢电极合金的相结构与电化学性能 总被引:11,自引:0,他引:11
XRDRietveld分析显示,LaxMg3-xNi9(x=1.0-2.3)均由六方PuNi3型结构的主相及少量LaNi5及MgNi2杂相组成,主相的晶胞参数随x的增加而线性增大.合金的氢化物仍保持PuNi3型结构,但其晶胞体积有较大的膨胀.电化学测试表明,随x增加,合金的最大放电容量由88.3(x=1.0)逐渐增大到397.5mA·h/g(x=2.0),然后又降低到230mA·h/g(x=2.3).对放电容量超过348mA·h/g的合金(x=1.7-2.2),在放电电流i=400-1200mA/g的条件下,合金的高倍率放电性能(HRD)均随x增加而有不同程度的降低.HRD的缓慢降低主要与合金电极进行电荷迁移反应时的电催化活性的逐渐降低有关,而在x>2.0时,HRD的快速降低与氢在合金中的扩散速率明显降低有关,上述合金经100次循环后合金的容量保持率为55.7%-62.9%,容量衰退较快与循环过程中La和Mg的氧化腐蚀以及合金较大的吸氢体积膨胀率有关. 相似文献
17.
Hydrogen Storage Properties of Co-free La-Mg-Ni-Based Alloys 总被引:2,自引:0,他引:2
在Ar气保护下采用磁悬浮感应熔炼方法,制备无CoLa1.8Ti0.2MgNi9-xAlx(x=0,0.1,0.2,0.3,0.4)合金,系统研究Al取代Ni对合金的结构及贮氢性能的影响。所有合金均包含LaMg2Ni9相,当Al含量x≥0.1,La(Ni,Al)5相取代LaNi5相、LaNi3相消失、LaNi2相出现。测试合金的焓变值与LaNi5合金(–30.6kJ/molH2)相近。Al取代Ni不仅提高合金电极的放电容量,而且改善循环稳定性及电化学动力学性能。La1.8Ti0.2MgNi8.7Al0.3合金贮氢性能较好,30℃下有效吸氢质量分数为1.32%;最大放电容量达到340mAh/g;1400mA/g放电电流密度下高倍率放电性能HRD1400高达79.8%;经100次充放电循环放电容量保持率为60%。 相似文献
18.
通过机械球磨法制备了一系列的Mg Ni、Zr B和Mg Ni-Zr B储氢合金。通过XRD、SEM、充放电性能、循环伏安、塔菲尔极化曲线、交流阻抗测试,研究了Zr B的添加对Mg Ni合金的储氢性能的影响。结果表面,Zr B的添加大大提高了Mg Ni合金的电化学性能。球磨15 h的Mg Ni-Zr B(100:5)复合物体现出最好的电化学性能,循环20周和50周时的放电容量分别为226和209 m Ah·g-1,远远高于Mg Ni合金的放电容量。动态极化曲线和交流阻抗测试显示Zr B的添加极大的提高了Mg Ni合金的抗腐蚀性能和电化学动力学性能。 相似文献