首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PLLA/PDLA blend films with only stereocomplex crystallites as a crystalline species together with pure PLLA and PDLA films with only homo‐crystallites as a crystalline species were prepared, and the effects of enantiomeric polymer blending, crystalline species, and crystallinity on the water vapor permeability were investigated. The WVT coefficient P of PLLA/PDLA blend films was 14–23% lower than that of pure PLLA and PDLA films in the crystallinity Xc range of 0–30%. Amorphous PLLA/PDLA blend films have a much lower P than pure PLLA and PDLA films. The dependence of P on Xc for blend films was stronger for Xc = 0–30% than for Xc = 30–100%. This dependence is discussed using the Nielsen model and the concept of “restricted” (or “restrained”) and “free” amorphous regions.

  相似文献   


2.
3.
4.
Poly(L ‐lactide) (PLLA)/poly(D ‐lactide) (PDLA)/clay nanocomposites are prepared via simple melt blending method at PDLA loadings from 5 to 20 wt%. Formation of the stereocomplex crystals in the nanocomposites is confirmed by differential scanning calorimetry and wide‐angle X‐ray diffraction (WAXD). The internal structure of the nanocomposites has been established by using WAXD and transmission electron microscope analyses. The dispersion of clay in the PLLA/PDLA/clay nanocomposites can be improved as a result of increased intensity of shear during melt blending. The overall crystallization rates are faster in the PLLA/PDLA/clay nanocomposites than in PLLA/clay nanocomposite and increase with an increase in the PDLA loading up to 10 wt%; however, the crystallization mechanism and crystal structure of these nanocomposites remain unchanged despite the presence of PDLA. The storage modulus has been apparently improved in the PLLA/PDLA/clay nanocomposites with respect to PLLA/clay nanocomposite. Moreover, it is found that the hydrolytic degradation rates have been enhanced obviously in the PLLA/PDLA/clay nanocomposites than in PLLA/clay nanocomposite. POLYM. ENG. SCI., 54:914–924, 2014. © 2013 Society of Plastics Engineers  相似文献   

5.
DSC indicated that the nucleation of PLLA is enhanced in the presence of PGA even at a PGA content as low as 0.1 wt.‐%. However, the enhancing behavior of PGA was different to that of other nucleating agents for PLLA. Polarized optical microscopy revealed that the presence of PGA increased the number of PLLA spherulites per unit area. WAXD showed that in the PLLA/PGA films, PLLA and PGA crystallize separately to form their respective crystallites and PGA crystallites were formed at a PGA content at above 3 wt.‐% (at least). FTIR spectroscopy indicated that that there are significant interactions between PLLA and PGA chains in amorphous regions. Such interactions should have enhanced the growth of PLLA crystallites from the surface of PGA crystallites.

  相似文献   


6.
A new target collector was designed for taking up aligned nanofibers by electrospinning. The collector consists of a rotor around which several fins were attached for winding electrospun filaments continuously in large amounts. The alignment of the nanofibers wound on the collector was affected by the electrospinning conditions, such as the needle‐to‐collector distance and the applied voltage, but not by the rotation speed of the collector. At a voltage of 0.5 kV · cm?1, about 60% of the fibers were found to be aligned within an angle of ± 5° relative to the rotational direction of the collector. The fiber alignment was improved to 90% by drawing the fiber bundle 2–3 times at 110 °C. The drawing was also effective for crystal orientation of the fibers as revealed by WAXD. The drawn fibers show improved mechanical properties.

  相似文献   


7.
Poly‐L ‐lactide (PLLA) is being widely considered for repair of damaged tissues, for controlled antibiotic release, and also as scaffolds for cultured cells. PLLA was blended with the lactide monomer in its two enantiomeric forms: D ‐lactide (D ‐la) and L ‐lactide (L ‐la) and with the cyclic dimmer D ,L ‐la, in order to enhance its flexibility and thereby overcome its inherent problem of brittleness. In this work, the crystallization, phase structure, and tensile properties of PLLA and PLLA plasticized with 5, 10, 15, and 20 wt% of D ‐la, L ‐la, and D ,L ‐la are explored. The three plasticizers used were effective in lowering the glass transition temperature (Tg) and the melting temperature (Tm) of PLLA, around 20°C for a plasticizer content of 20 wt%. The tensile strength and modulus of the blends decreased following the increasing content of plasticizers from approximately 58 MPa to values below 20 MPa, and from 1667 to 200 MPa, respectively. Aging the blends at storage ambient temperature revealed that the enhanced flexibility as well as the morphological stability was lost over time due to the migration of the plasticizer to the surface, this being less marked in the case of D ‐la as a result of interactions between the polymer and its enantiomeric monomer of complementary configuration. POLYM. ENG. SCI., 53:2073–2080, 2013. © 2013 Society of Plastics Engineers  相似文献   

8.
The effects of storage at 25°C in swelling solvents having different solubility parameter (δs) values of 16.8–26.0 J0.5 cm−1.5 on the physical properties and structure of as‐cast poly(L ‐lactide) (PLLA) films was investigated by the degree of swelling (DS), differential scanning calorimetry (DSC), and tensile tests. It was found that PLLA film shows durabity to swelling solvents having δs values much lower or higher than the value range of 19–20.5 J0.5 cm−1.5 and that the polymer solubility parameter (δp) for PLLA is in the value range of 19–20.5 J0.5 cm−1.5. The decrease in the glass transition temperature (Tg) and tensile properties and the increase in melting temperature (Tm) and crystallinity (xc) were larger for PLLA films swollen in solvents having a high DS at 7 days (DS7days). The slight increase in Tm and xc for PLLA films after swelling in solvents with high DS7days values was due to the crystallization of PLLA that occurred during swelling, while the small increase in Tg and elongation at break (εB) for PLLA films after immersion in the solvents having low DS7days values was ascribed to stabilized chain packing in the amorphous region. The Tg, εB, and Young's modulus of the PLLA films after swelling in the solvents varied in the ranges of 47–57°C, 4–8%, and 55–77 kg/mm2, depending on their DS7days or δs values. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1582–1589, 2001  相似文献   

9.
The effects of nucleobases, especially uracil, on the nonisothermal and isothermal crystallization, melting behavior, spherulite morphology, and crystalline structure of bio‐based and biodegradable PLLA are studied. The melt‐ and cold‐crystallization rates of PLLA increase with increasing uracil loading. The melting behavior of nonisothermally melt‐ and cold‐crystallized PLLAs depends on the uracil content. The isothermal crystallization kinetics is analyzed based on an Avrami model. The incorporation of uracil changes the t1/2/Tc profile of PLLA due to the more distinct heterogeneous nucleation effects at small supercooling. The crystalline structure of PLLA is not affected by uracil presence. The nucleation density increases and the spherulite size decreases by uracil incorporation.

  相似文献   


10.
Four‐armed star poly(l ‐ lactide)‐grafted multiwalled carbon nanotubes (CNTs‐g‐4PLLA) were synthesized through the nucleophilic substitution reaction between 4PLLA and acryl chloride of CNTs and then characterized by transmission electron microscope, X‐ray photoelectron spectroscopy, thermal gravimetric analysis (TGA), and ultraviolet visible spectrophotometer. The results indicated that 4PLLA was successfully grafted onto CNTs, and CNTs‐g‐4PLLA contained 37.7 wt% of 4PLLA. PLLA/CNTs‐g‐4PLLA nanocomposites were prepared by solution casting with different CNTs‐g‐4PLLA content. Rheological behavior of PLLA/CNTs‐g‐4PLLA nanocomposites was measured using a rheometer. The result showed that CNTs‐g‐4PLLA formed a network structure at percolation concentration, which improves obviously rheological properties of PLLA in the molten state. The crystallization behavior and crystal structure of the nanocomposites were comprehensive evaluated through differential scanning calorimetry, X‐ray diffraction, and polarizing optical microscope. The results found that CNTs‐g‐4PLLA played two roles in PLLA crystallization. The addition of CNTs‐g‐4PLLA acted as nucleating agent and obviously accelerated the spherulites growth under percolation concentration, while it inhibited the movement of PLLA chains at above percolation concentration, resulting in the decrease of crystallinity. Thermal stability and mechanical properties of the nanocomposites were also investigated using TGA, dynamic mechanical analysis, and tensile test. These results indicated that the incorporation of CNT‐g‐4PLLA into the PLLA matrix improved the thermal stability, storage modulus, and tensile strength of the nanocomposites. POLYM. COMPOS., 37:2744–2755, 2016. © 2015 Society of Plastics Engineers  相似文献   

11.
Attempts were carried out to enhance the surface hydrophilicity of poly(L ‐lactide), that is, poly(L ‐lactic acid) (PLLA) film, utilizing enzymatic, alkaline, and autocatalytic hydrolyses in a proteinase K/Tris–HCL buffered solution system (37°C), in a 0.01N NaOH solution (37°C), and in a phosphate‐buffered solution (100°C), respectively. Moreover, its chain‐scission mechanisms in these different media were studied. The advancing contact‐angle (θa) value of the amorphous‐made PLLA film decreased monotonically with the hydrolysis time from 100° to 75° and 80° without a significant molecular weight decrease, when enzymatic and alkaline hydrolyses were continued for 60 min and 8 h, respectively. In contrast, a negligible change in the θa value was observed for the PLLA films even after the autocatalytic hydrolysis was continured for 16 h, when their bulk Mn decreased from 1.2 × 105 to 2.2 × 104 g mol?1 or the number of hydrophilic terminal groups per unit weight increased from 1.7 × 10?5 to 9.1 × 10?5 mol g?1. These findings, together with the result of gravimetry, revealed that the enzymatic and alkaline hydrolyses are powerful enough to enhance the practical surface hydrophilicity of the PLLA films because of their surface‐erosion mechanisms and that its practical surface hydrophilicity is controllable by varying the hydrolysis time. Moreover, autocatalytic hydrolysis is inappropriate to enhance the surface hydrophilicity, because of its bulk‐erosion mechanism. Alkaline hydrolysis is the best to enhance the hydrophilicity of the PLLA films without hydrolysis of the film cores, while the enzymatic hydrolysis is appropriate and inappropriate to enhance the surface hydrophilicity of bulky and thin PLLA materials, respectively, because a significant weight loss occurs before saturation of θa value. The changes in the weight loss and θa values during hydrolysis showed that exo chain scission as well as endo chain scission occurs in the presence of proteinase K, while in the alkaline and phosphate‐buffered solutions, hydrolysis proceeds via endo chain scission. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1628–1633, 2003  相似文献   

12.
A new stereo pentablock copolymer consisting of poly(l ‐lactide) (PLLA: A), poly‐d ‐lactide (PDLA: B), and poly(butylene succinate) (PBS: C) is synthesized by two‐step ring‐opening polymerization of d ‐ and l ‐lactides in the presence of bis‐hydroxyl‐terminated PBS prepolymer that has been prepared by the ordinary polycondensation. The pentablock copolymers (PLLA‐PDLA‐PBS‐PDLA‐PLLA) as well as the triblock copolymers (PLLA‐PBS‐PLLA) obtained as the intermediates show different properties depending on the polymer compositions. In the pentablock copolymers, the direct connection of the PLLA and PDLA blocks allows easy formation of the stereocomplex crystals, while the introduction of the semicrystalline PBS block is effective not only for changing the crystallization kinetics but also for imparting an elastomeric property.

  相似文献   


13.
TMC/LLA copolymers with several TMC/LLA ratios are synthesized and a composite is obtained by reinforcing with short PLGA fibers. In vitro degradation is studied at 37 °C in pH = 7.4 buffer and compared with a PLLA homopolymer. The degradation of the copolymers appears slower than that of PLLA, showing that TMC units are more resistant to hydrolysis than LLA. Compositional changes indicate a preferential degradation of LLA units as compared to TMC ones. Morphological changes with crystallization of degradation by‐products are observed. The composite degrades much faster than the neat copolymer and PLLA because the faster degradation of PLGA fibers speeds up the degradation of the matrix. The composite appears promising for the fabrication of totally bioresorbable stents.

  相似文献   


14.
Biodegradable hyperbranched poly(ester amide) (HBP) was used as a compatibilizer to modify PLA/SiO2 nanocomposites for the first time. The ternary composites displayed dramatically improved mechanical properties including excellent toughness and fairly high stiffness. TEM images revealed that an encapsulation structure was formed by HBP surrounding SiO2 nanoparticles, and their surfaces became flocculent due to the migration process of silica. The linear viscoelastic behavior of the nanocomposites measured by parallel plate rheometer indicated that strong interface adhesion existed between PLA matrix and silica nanofiller after incorporating of HBP. The compatibilization effect of HBP and the enhanced mobility of nanoparticles contributed to the improved mechanical properties.

  相似文献   


15.
The effect of poly(D ,L ‐lactide‐copara‐dioxanone) (PLADO) as the compatibilizer on the properties of the blend of poly(para‐dioxanone) (PPDO) and poly(D ,L ‐lactide) (PDLLA) has been investigated. The 80/20 PPDO/PDLLA blends containing from 1% to 10% of random copolymer PLADO were prepared by solution coprecipitation. The PLADO component played a very important role in determining morphology, thermal, mechanical, and hydrophilic properties of the blends. Addition of PLADO into the blends could enhance the compatibility between dispersed PDLLA phase and PPDO matrix; the boundary between the two phases became unclear and even the smallest holes were not detected. On the other hand, the position of the Tg was composition dependent; when 5% PLADO was added into blend, the Tg distance between PPDO and PDLLA was shortened. The blends with various contents of compatibilizer had better mechanical properties compared with simple PPDO/PDLLA binary polymer blend, and such characteristics further improved as adding 5% random copolymers. The maximum observed tensile strength was 29.05 MPa for the compatibilized PPDO/PDLLA blend with 5% PLADO, whereas tensile strength of the uncompatibilized PPDO/PDLLA blend was 14.03 MPa, which was the lowest tensile strength. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
A new melt‐electrospinning system equipped with a CO2‐laser melting device was developed. Rod‐like samples were prepared from poly(lactide) pellets, and then fibers were produced from the samples using the new system. The effects of producing conditions on the fiber diameter were investigated. Furthermore, the physical properties of the fibers were investigated. The following conclusions were obtained: (i) in a special case, fibers having an average fiber diameter smaller than 1 μm could be obtained using the system developed; (ii) the fiber diameter could be decreased with increased laser output power, but the physical properties of the fibers such as the melting point and the molecular weight were decreased; and (iii) the electrospun fibers exhibited an amorphous state, and the annealed fibers exhibited an isotropic crystal orientation. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1640–1645, 2007  相似文献   

17.
18.
Effect of Poly(l ‐lactide)/Poly(d ‐lactide) (PLLA/PDLA) block length ratio on the crystallization behavior of star‐shaped poly(propylene oxide) block poly(d ‐lactide) block poly (l ‐lactide) (PPO–PDLA–PLLA) stereoblock copolymers with molecular weights (Mn) ranging from 6.2 × 104 to 1.4 × 105 g mol?1 was investigated. Crystallization behaviors were studied utilizing differential scanning calorimetry (DSC), polarized optical microscopy (POM), and wide‐angle X‐ray diffraction (WAXD). Only stereocomplex crystallites formed in isothermal crystallization at 140 to 156°C for all samples. On one hand, the overall crystallization rate decreased as PLLA/PDLA block length ratio increased. As PLLA/PDLA block length ratio increased from 7:7 to 28:7, the value of half time of crystallization (t1/2) delayed form 2.85 to 5.31 min at 140°C. On the other hand, according to the Lauritzen–Hoffman theory, the fold‐surface energy (σe) was calculated. σe decreased from 77.7 to 73.3 erg/cm2 with an increase in PLLA/PDLA block length ratio. Correspondingly increase in nucleation density was observed by the polarized optical microscope. Results indicated that the PLLA/PDLA block length ratio had a significant impact on the crystallization behavior of PPO–PDLA–PLLA copolymers. POLYM. ENG. SCI., 55:2534–2541, 2015. © 2015 Society of Plastics Engineers  相似文献   

19.
In an attempt to enhance the biocompatibility and mechanical strength of fibrous polymeric scaffold systems, nanocrystalline hydroxyapatite (HAp) particles were incorporated into the electrospun poly(L ‐lactide) (PLLA) fibers and then mechanically interlocked using a vapor‐phase solvent adsorption method. The solvent‐assisted compression molding substantially increased the tensile strength (from 4.61 to 12.63 MPa) and mechanical modulus (from 50.6 to 627.7 MPa) of the fibrous scaffold, which maintained the interstitial space between the fibers to allow the facile transport of nutrients and waste during cell growth and polymer biodegradation. Macrometer‐sized pores (ca. 100–400 µm) were introduced into the scaffolds in a controlled fashion using the salt leaching/gas forming technique to give desired space for a facile cell implantation and growth. Overall, the developed methodology allows the polymer‐based scaffold systems to be tailored for various applications in light of surface characteristics, mechanical strength, and pore size of engineered scaffolds.

  相似文献   


20.
In this study, stereocomplexed poly(lactide) (PLA) was investigated by blending linear poly(l ‐lactide) (PLLA) and tri‐block copolymer poly(d ‐lactide) ? (polyethylene glycol) ? poly(d ‐lactide) (PDLA‐PEG‐PDLA). Synthesized PDLA‐PEG‐PDLA tri‐block copolymers with different PEG and PDLA segment lengths were studied and their influences on the degree of sterecomplexation and non‐isothermal crystallization behaviour of the PLLA/PDLA‐PEG‐PDLA blend were examined in detail by DSC, XRD and polarized optical microscopy. A full stereocomplexation between PLLA and PDLA‐PEG4k‐PDLA200 could be formed when the L/D ratio ranged from 7/3 to 5/5 without the presence of PLA homocrystals. The segmental mobility and length of both PEG and PDLA are the dominating factors in the critical D/L ratio to achieve full stereocomplexation and also for nucleation and spherulite growth during the non‐isothermal crystallization process. For fixed PEG segmental length, the stereocomplexed PLA formed showed first an increasing and then a decreasing melting temperature with increasing PDLA segments due to their intrinsic stiff mobility. Furthermore, the effect of PEG segmental mobility on PLA stereocomplexation was investigated. The results clearly showed that the crystallization temperature and melting temperature of stereocomplexed‐PLA kept increasing with increasing PEG segmental length, which was due to PEG soft mobility in the tri‐block copolymers. However, PEG was not favourable for nucleation but could facilitate the spherulite growth rate. Both the PDLA and PEG segmental lengths in the tri‐block copolymers affect the crystallinity of stereocomplexed‐PLA and the stereocomplexation formation process; they have a different influence on blends prepared by solution casting or the melting method. © 2015 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号