首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the emergence of advanced high strength steels (AHSSs) and other light–weight materials, edge fracture has been one of the important issues evading reliable prediction using CAE tools. To study edge fracture behavior of AHSS, a comprehensive hole expansion test (HET) program has been carried out on a DP780 sheet. Specimen with three different edge conditions (milled edge, water jet cut edge and punched edge) are manufactured and tested. Results reveal that the hole expansion ratio (HER) of the present DP780 sheet is around 38 % for milled specimen and water jet cut specimen, and about 14 % for punched specimen. A novel method of a central hole specimen tension is also introduced for edge fracture study, showing a similar trend as found in HET. The paper briefly presents a procedure and the results for a full calibration of the DP780 sheet for plasticity and fracture, where a hybrid testing/simulation method is used to obtain parameters for Hill 48 plasticity model and modified Mohr–Coulomb fracture model. The finite element simulation gives an accurate prediction of HER, as well as the load displacement response and specimen deflection distribution in the hole expansion tests on uncracked material. The correlation between simulation and tests on central hole specimen also turns out to be very good. The paper also presents a very interesting insight of the initiation and propagation of cracks from the hole edge during a hole expansion test by numerical simulation in comparison with testing observation. The number of final cracks are accurately predicted. Other new aspects of the present paper include an improved 3D DIC measurement technique and a simplified analytical solution, from which a rapid estimation of displacement and hoop strain field can be made (see “Appendix 2”).  相似文献   

2.
The strain path may change in actual sheet metal‐forming processes, so the determination of formability of sheet metal should consider the nonlinear strain path. For identifying the forming limit (FL) strains under nonlinear strain path, a conventional two‐step procedure with unloading is classically used to produce the strain path change, which results in no continuous measure of strain. The in‐plane biaxial tensile test with a cruciform specimen is an interesting alternative to overcome the drawbacks of conventional method. The strain path change can be made without unloading during a single test. In this work, the experimental FL strains of DP600 sheets under two types of nonlinear strain path are investigated and then compared with those under linear strain paths. The Oyane ductile fracture criterion is used in the finite element simulation to predict the experimental results.  相似文献   

3.
铝合金板成形性及成形工艺研究现状   总被引:3,自引:3,他引:3  
邓学峰  张辉  陈振华 《材料导报》2005,19(12):56-59
介绍了铝合金板材成形过程中影响其成形性能的主要因素,提高铝合金成形性能的先进成形工艺,以及有限元分析技术在铝合金板成形领域应用中的进展.指出开展对高性能铝合金板成形性能的实验研究与成形工艺有限元数值模拟有利于拓宽高性能铝合金板成形件在高技术领域的应用.  相似文献   

4.
基于FEA的板料成形工艺优化及评价函数研究   总被引:1,自引:0,他引:1  
基于有限元和优化方法的板料成形工艺优化设计技术已经成为新的研究热点,建立合理的评价标准以形成目标函数,从而用于评价冲压件的成形性是其关键技术之一.提出局部成形性、整体成形性和综合成形性评价函数.基于试验设计法,结合方盒形件拉深以及发动机罩外板成形,验证了本文提出的评价函数具有良好的可靠性和易用性.  相似文献   

5.
为研究带有反向压力粘性介质压力胀形过程中接触条件对板材成形性的影响规律,利用DEFORMTM-2D结合韧性断裂准则对覆层板粘性介质压力胀形过程进行有限元分析.结果表明:接触表面无摩擦单纯依靠反向压力能够提高板材成形极限,随着接触表面摩擦系数增大,板材壁厚分布愈均匀,板材的破裂位置由试件顶端转移到凹模圆角处,板材成形极限显著提高.因此,在三维应力状态下有效控制板材所受法向压力和界面摩擦力可以提高板材成形性.  相似文献   

6.
目的 冲裁加工后的第3代先进高强钢QP980板材在成形中会因边缘开裂而显著影响汽车结构件安全性,针对这一问题,对QP980板材边缘开裂行为进行研究。方法 使用QP980板材通过钻孔和冲孔2种方法制备不同边缘状态的试样,并进行扩孔和中心孔拉伸试验。分析不同边缘状态试样的扩孔率和断裂应变演化规律。采用DF2015断裂模型对QP980板材的韧性断裂行为进行预测。结果 钻孔试样的扩孔率约为33%,冲孔试样的扩孔率约为24%。与钻孔试样的试验结果相比,DF2015断裂模型的模拟结果显示出了良好的预测性,但DF2015断裂模型无法准确预测冲孔试样的载荷–位移响应、扩孔率和断裂应变。结论 不同的预加工工艺导致QP980板材表现出不同的边缘开裂行为。中心孔拉伸试验结果与扩孔试验结果趋势一致,因此中心孔拉伸试验是研究边缘开裂的良好方法。钻孔预加工工艺可以保持板材的原始性能,而冲裁预加工工艺会导致板材边缘发生严重的预损伤。由于DF2015断裂模型未考虑预损伤,因此无法准确预测冲孔试样的边缘开裂行为。  相似文献   

7.
目的研究汽车车身用5B003A板的成形性能。方法在进行单轴拉伸试验的基础上,利用软件eta/DYNAFORM模拟了板成形极限曲线、破裂点应变路径、圆筒拉深过程,并进行了相应变形参数的优化。结果 5B003A板单向拉伸和有限元模拟均出现"交叉颈缩"现象,并且在与轧制呈45°角方向上的冲压性能优于0°和90°方向;5B003A板成形极限破裂点的应变路径漂移倾向较明显,双拉区中均呈ε2=const的应变状态;在与拱顶高实验相近变形条件下,优化得到最佳凸模圆角半径为20 mm时,与极限拉深系数0.43对应的无凸缘拉深的最大板坯尺寸为233 mm,相应最佳压料力为68 kN。结论 5B003A板在45°方向上有较好的冲压性能,且凸模圆角半径、板坯直径、压料力等工艺参数对其拉深成形性能影响较大。  相似文献   

8.
研究渐进成形过程中板料减薄带的变化,可以提供合理的加工参数,提高板料的成形性能和加工利用率,减少零件破裂失效.基于渐进成形过程中金属板料轮廓的变化与理想情况下轮廓的区别,对渐进成形初始成形阶段A3003铝板减薄带的产生原因和剪切力的变化过程进行了理论分析,并通过有限元模拟分别从未变形区金属板料的长度和强度两个角度对板料渐进成形过程中未变形区下沉的影响,以及成形角度和杨氏模量对变形区回弹的影响两个方面,对减薄带的产生原因进行研究.结果表明:板料未变形区的下沉和变形区的回弹使板料在初始加工阶段形成一段平缓区域,工具头在平缓区域的变形性质发生了变化,平缓区域发生剪切变形导致了板料在初始加工阶段形成了减薄带;渐进成形时减小板料未变形区的长度,增大板料与垂直方向的角度可以一定程度上阻碍减薄带的产生,模拟结果与理论分析相符合.  相似文献   

9.
板料的温塑性成形方法已经得到广泛使用,可以运用到双相钢激光拼焊板成形中以提高其成形性能。以盒形件为分析对象对双相钢激光拼焊板的温拉深性能进行了研究,通过温单拉实验、盒形件温拉深过程的有限元模拟与实冲实验以及金相实验,分析了双相钢激光拼焊板由常温到500℃各个温度下的力学性能与拉深性能。结果表明:成形温度对双相钢激光拼焊板温拉深影响比较显著,在400~500℃温度范围内进行温成形,能获得较好的成形性能。  相似文献   

10.
Within the Collaborative Research Center CRC 666 at the TU Darmstadt bifurcated structures in integral style are produced out of steel sheet band. In this context, the cutting technology is used to prepare the semi‐finished product for subsequent forming and machining operations as well as to even manufacturing induced shape and dimensional inaccuracies. In contrast to conventional cutting processes, the workpiece is constantly moved because of the continuous flow production. Thus, high dynamics of the machining process are required. To meet this demand, special built machine tools and the high speed cutting (HSC) technology are applied. This article shows the achieved results in sheet metal and edge milling.  相似文献   

11.
介绍了冲压领域常用板材成形性能试验方法,包括国标收录的拉深、凸耳、杯突、扩孔、弯曲、锥杯、FLC试验,以及国标没有收录的抗凹性、摩擦、拉弯回弹、方板对角拉伸、波纹度试验等试验方法,对各种试验方法从试验目的、试样制备以及试验仪器选用等环节作了详细介绍。然后,针对目前成形性能试验应用中存在的一些问题进行了分析,并给出了建议。最后,对板材成形性研究领域最新的试验技术以及发展前景作了阐述。  相似文献   

12.
A weight function approach is proposed to calculate the stress intensity factor and crack opening displacement for cracks emanating from a circular hole in an infinite sheet subjected to mixed modes load. The weight function for a pure mode II hole‐edge crack is given in this paper. The stress intensity factors for a mixed modes hole‐edge crack are obtained by using the present mode II weight function and existing mode I Green (weight) function for a hole‐edge crack. Without complex derivation, the weight functions for a single hole‐edge crack and a centre crack in infinite sheets are used to study 2 unequal‐length hole‐edge cracks. The stress intensity factor and crack opening displacement obtained from the present weight function method are compared well with available results from literature and finite element analysis. Compared with the alternative methods, the present weight function approach is simple, accurate, efficient, and versatile in calculating the stress intensity factor and crack opening displacement.  相似文献   

13.
目的 以宝钢生产的QP980、QP1180、DP980、DP1180 4种典型超高强钢材料为研究对象,进行QP、DP钢种材料面内与边部成形特性对比分析。方法 采用单向拉伸设备以及成形试验机,并结合DIC分析技术,对4种材料的力学性能、面内成形性及边部成形性进行试验研究。结果 与DP钢相比,同等强度级别QP钢的均匀延伸率及加工硬化系数均明显更高。在面内成形应变状态下,同等强度级别QP钢极限成形深度均明显大于DP钢的,但主、次应变大小差异不大。在边部成形应变状态下,同等强度级别QP、DP钢极限成形深度以及主、次应变大小均差异不大。QP、DP钢面内成形最大主应变均明显大于边部成形最大主应变。结论 与同强度级别DP钢相比,QP钢具有更高的均匀延伸率及加工硬化系数。QP钢材料的加工硬化系数高,材料内部协同变形能力强,面内成形性能明显优于DP钢材料的,但两者的边部成形性能差异不大;QP、DP钢材料能承受更大的面内主应变,受边部加工硬化及毛刺的影响,冲裁后,边部应变明显降低,在QP、DP超高强钢零件设计制造过程中,应尽可能避免边部发生较大的变形。  相似文献   

14.
Sheet metal forming is cost-effective manufacturing process and hold a significant key position in fabrication works. Welding being a popular technique the industries primarily prefer for joining of sheet metal formed parts. The inherent material properties changes at the weld metal and heat affected zone post welding process, hence the impact and changes on mechanical strength aspects need to be studied. The current study focuses on influence of plasma arc welding on formability of 1.6 mm thick duplex stainless steel 2205 sheet using Erichsen cupping test by gauging the height of the cup formed. The performed tests such as uniaxial tensile, microhardness showed better mechanical properties and decrease in formability noted from Erichsen cupping test for weld metal compared to base metal. Finite element analysis of Erichsen cupping test is conducted using ABAQUS software and results are matched with experimental outcomes for validation. The comparison shows that a deviation of less than 5 % is noticed between actual and predicted formability index values. Microstructure examination reveals that, equiaxed grains at the weld center and columnar grains at sides typically formed in the weld metal region. The decrease in formability of weld blank compared to base blank is attributed to an increase in ferrite content. This is supported by amount of ferrite content measured in weld metal is 55 % and base metal is 52 %. The scanning electron micrographs (base and weld blank) reveal the mode of failure is ductile.  相似文献   

15.
The forming limit diagram (FLD) is a useful concept for characterizing the formability of sheet metal. In this work, the formability, fracture mode and strain distribution during forming of Ti6Al4V titanium alloy and Al6061-T6 aluminum alloy sheets has been investigated experimentally using a special process of hydroforming deep drawing assisted by floating disc. The selected sheet material has been photo-girded for strain measurements. The effects of process parameters on FLD have been evaluated and simulated using ABAQUS/Standard. Hill-swift and NADDRG theoretical forming limit diagram models are used to specify fracture initiation in the finite element model (FEM) and it is shown that the Hill-swift model gives a better prediction. The simulated results are in good agreement with the experiment.  相似文献   

16.
The effect of crystallographic textures on the formability of BCC steel sheets has been studied by using crystalline plasticity finite element analysis (FEA) and experiments. It was confirmed that one of the important reasons why the conventional high-strength steel sheet has poor formability was due to lack of {111} fiber texture components —γ-fiber texture—. In this paper, a texture adjusted design method is proposed to improve the formability of conventional high-strength steel sheets. First, an artificial γ-fiber texture is defined in terms of a rotationally symmetric Gaussian distribution of deviation angles, which has a certain scatter width along the given γ-fiber skeleton line in Euler space. The analytic textures are designed by introducing the artificial γ-fiber texture into the conventional high-strength steel model. The blending coefficient corresponding to the {111}/{001} volume fraction ratio is selected as the design parameter. Then, an optimum crystallographic texture of steel sheet is found through the limit dome height (LDH) formability tests by employing as objective function, which is evaluated by a maximum thinning ratio of the deformed sheet. Further, it is demonstrated that the sheet with the optimum texture shows the best straining in VDI benchmark stamping tests.  相似文献   

17.
For conventional sheet metal forming at room temperature, numerous tribometers have been developed in the 20th century. At the present state of the art, there are some challenges for tribometry in warm and hot forming processes of high-strength aluminum (e.g., EN AW-7075). Especially for nonisothermal processes with heated sheets and cooled dies, the tribological design is a major challenge, which needs to be addressed by investigations with adapted tribometers. Herein, the transferability of friction and wear behavior of three different lubricants and temperatures is investigated. Therefore, tribometer test results are compared with real forming trials in combination with thermomechanical finite element simulations. Both the behavior of different lubricant types and the characteristics of tool lubrication in sheet metal forming are discussed.  相似文献   

18.
Forming limit diagrams are used by the stampers to solve sheet metal forming problems. In practice, sheet metals have been subjected to various combinations of strain. Necking during sheet metal forming, sets the limit to which the sheet metal can be formed. Forming limit diagram is an effective tool to evaluate the formability of sheet metal in various strain conditions. The information upon the formability of the sheet metal is important for both sheet metal manufacturers and users. In this work, a study has been made on the formability of aluminium 19000 grades annealed at three different temperatures namely 160 °C, 200 °C and 300 °C for sheet thickness of 2.00 mm. The tensile properties and formability parameters were experimentally evaluated and they are related to forming limit diagram. Strain distribution profiles obtained from the forming experiment have been analyzed. The fractured surface of the formed samples were viewed using scanning electron microscope (SEM) and the SEM images were correlated with fracture behaviour and formability of sheet metal. The sheet which is annealed at 300 °C has been found to possess good drawability and stretchability compared to other two annealed sheets.  相似文献   

19.
A combined experimental and numerical study of the effects of die and punch temperature on the formability of a modified AA3003 aluminum alloy sheet for a case study sample is presented. Here, the non-isothermal deep drawing of a cup-like feature in a thin gauge aluminum automotive component is considered. An experimental forming setup that incorporates both heated dies and a cooled punch has been developed. A parametric study of the effects of die temperature, punch temperature, and blank holder force on the formability of the part is conducted. Numerical simulations of the warm forming process are performed using a coupled thermo-mechanical finite element model. The temperature-dependant material model combines the Bergstrom hardening rule with Barlat’s YLD2000 yield function and was implemented in LS-DYNA as a user-defined material model. Selected experimental cases were modelled numerically and compared to experiments. The FEA model was validated against experimental results by comparing measured and predicted punch force versus displacement as well as trends in the formability as a function of die temperature.  相似文献   

20.
Nimonic alloys are Ni-base superalloys used for several high temperature applications, notable among them are the components in space vehicles, rocket engines, submarines, nuclear reactors, chemical processing vessels and heat exchange tubing as they exhibit excellent mechanical strength and creep resistance at high temperatures. Hence, evaluation of their formability characteristics is of utmost importance to make them into several useful components. Limit strains or forming limit curve is one of the parameters that indicates the formability, especially the drawability of sheet metal for deep drawing applications. In this paper, the limit strains of Nimonic C-263 alloy is investigated and presented using an explicit finite element code LSDYNA 3D. The material properties and the material model are evaluated by conducting tensile tests. The limit strains obtained from the simulation are verified by the analytical equations developed using vertex theory. The results tally within ±10% error.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号