首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The present contribution summarises first results that have been achieved with the new brazing material Sn75Cu20Ge5 (wt‐%) for transient liquid phase (TLP) bonding of aluminium cast alloy AlSi7Mg0.3 (wt‐%). The microstructure of the braze ribbons and the obtained joints have been thoroughly investigated on different length‐scales using scanning and transmission electron microscopy as well. Whereas the braze ribbon material is only composed of beta‐tin, η‐phase (Cu6Sn5) and some germanium rich precipitates, the transient liquid phase joint displays a much more complex microstructure that consist mainly of beta‐tin and different aluminium‐copper and aluminium‐germanium phases. In addition small silicon oxide rods and a hitherto unreported hexagonal aluminium‐copper‐magnesium‐germanium phase with approximated lattice parameters a = 0.7123 nm, c = 2.40 nm have been found in the seam of the joint.  相似文献   

2.
The aim of this investigation was to study the effect of welding heat input and postweld natural aging on residual stress, microstructure, and precipitation distribution in different zones of dissimilar friction stir welding of 8 mm thick plates of AA6082-T6 and AA7075-T6. It was found that atomic diffusion occurs at the interface of the materials in the stir zone of the joints. Transmission electron microscopic investigations showed that reprecipitation of fine Guinier–Preston zone, β′, and η′ precipitates resulted in increased micro-hardness in the SZ after natural aging. An increase in welding heat input resulted in decreased maximum tensile residual stress and increased size of the tensile residual stress region. Natural aging within the SZ and thermo-mechanical affected zone resulted in 15–20 MPa reduction of the residual stress in these zones.  相似文献   

3.
Optimization of transient liquid phase (TLP) bonding variables is essential to achieve a joint free from deleterious intermetallic constituents as well as with appropriate mechanical properties. In this research, TLP bonding of FSX-414 superalloy was performed using the MBF-80 interlayer. The effects of bonding time (1–30 min) and gap size (25–100 μm) were studied on the joint microstructure and its mechanical properties. Continuous centerline eutectic phases, characterized as nickel-rich and chromium-rich borides, were observed at the joints with incomplete isothermal solidification. The globular and acicular phases were seen at diffusion affected zone (DAZ). These phases could be nickel–chromium and cobalt–chromium borides. The time of complete isothermal solidification increased with increasing the gap size. This increase was consistent with the models based on the diffusion induced solid/liquid interface motion. A deviation of these models was observed for 75 and 100 μm gap size specimens. At complete isothermal solidification condition, the shear strength and the hardness of isothermal solidification zone decreased with increasing the gap size. Scanning electron microscopy (SEM) micrographs of shear fracture surfaces of the specimens with incomplete isothermal solidification showed secondary cracks through the brittle centerline eutectic constituents.  相似文献   

4.
An innovative method was applied for bonding Zircaloy-4 to stabilized austenitic stainless steel 321 using an active titanium interlayer. Specimens were joined by a partial transient liquid phase diffusion bonding method in a vacuum furnace at different temperatures under 1 MPa dynamic pressure of contact. The influence of different bonding temperatures on the microstructure, microindentation hardness, joint strength and interlayer thickness has been studied. The diffusion of Fe, Cr, Ni and Zr has been investigated by scanning electron microscopy and energy dispersive spectroscopy elemental analyses. Results showed that control of the heating and cooling rate and 20 min soaking at 1223 K produces a perfect joint. However, solid-state diffusion of the melting point depressant elements into the joint metal causes the solid/liquid interface to advance until the joint is solidified. The tensile strength of all the bonded specimens was found around 480–670 MPa. Energy dispersive spectroscopy studies indicated that the melting occurred along the interface of the bonded specimens as a result of the transfer of atoms between the interlayer and the matrix during bonding. This technique provides a reliable method of bonding zirconium alloy to stainless steel.  相似文献   

5.
Copper (T2) and aluminium alloy (5A06) were welded by friction stir welding (FSW). The microstructure, mechanical properties and phase constituents of FSW joints were studied by metallography, tensile testing machine and X-ray diffraction. The results indicated that the high quality weld joint could be obtained when tool rotational speed is 950 rpm, and travel speed is 150 mm/min. The maximum value of tensile strength is about 296 MPa. The metal Cu and Al close to copper side in the weld nugget (WN) zone showed a lamellar alternating structure characteristic. However, a mixed structure characteristic of Cu and Al existed in the aluminium side of weld nugget (WN) zone. There were no new Cu-Al intermetallic compounds in the weld nugget zone.  相似文献   

6.
The present investigation has been carried out in order to study the influence of the previous accumulated fatigue damage induced during high cycle fatigue (HCF), on the fracture toughness parameters of an AA6082-T6 aluminium alloy. The results show that previous fatigue damage accumulated in HCF does not affect the tensile static mechanical properties of the material, but gives rise to a significant debit of the toughness properties on this aluminium alloy. The fracture toughness results have shown that the crack opening displacement at a crack extension of 0.2 mm (COD0.2) decreases in the range of ∼18 to 36% whereas the value of the non-linear fracture mechanics parameter  J 0.2, decreases in the range of ∼11 to 25% at applied maximum stresses of 200 and 275 MPa, respectively. Optical microscopy observations conducted on the surface of the specimens subjected to HCF damage indicate the existence of microcracks ∼15 to 25 μm long nucleated along the grain boundaries of the material. Also, the scanning electron microscopy (SEM) observations of the fracture surfaces after the tearing tests show the predominance of a ductile fracture mechanism for the material prior to residual fatigue damage, whereas a mixed ductile–brittle fracture mechanism and the presence of flat facets were observed on the fracture surfaces of the specimens with a fatigue damage of 0.70.  相似文献   

7.
The joining of molybdenum to aluminium and aluminium-copper alloy using diffusion bonding has been investigated. Bond strengths have been measured by means of a simple shear jig and the joint microstructures characterized by electron microscopy and electron-probe microanalysis. Successful joints were produced by using a copper foil interlayer to form a eutectic liquid during the bonding process which helped disrupt the oxide film on aluminium and promote metal diffusion across the joint interface. When bonding commercial-purity aluminium to molybdenum, the iron present as an impurity caused a ternary eutectic liquid to form and, after solidification of the liquid phase, a thin film of Al7Cu2Fe was left behind on the aluminium. Failure of this joint occurred at a shear stress of 75 MPa, with the fracture path contained within the aluminium. With super-purity aluminium, a binary eutectic liquid was produced and the ensuing interface reaction resulted in a multi-layered structure of molybdenum-containing phases. The bond failed at the molybdenum interface at a stress of 40 MPa. When bonding aluminium-copper alloy to molybdenum without a copper interlayer, general melting at the interface via eutectic phase formation did not occur and the interface showed only localized reaction. The joint failed by separation from the molybdenum, at a stress of 25 MPa. When, however, a copper interlayer was used, fairly thick regions of multi-layered molybdenum intermetallics formed and the remaining surface was covered by a layer of Al7Cu2Mo phase. Failure of this joint occurred at a stress of 70 MPa, mainly by separation at the molybdenum interface.  相似文献   

8.
This paper reports part of the work done in a research project aimed at developing an optimised process to join 38 mm diameter tubes of 6082-T6 aluminium alloy using friction stir welding (FSW), and then to determine the fatigue performance under tension, torsion and tension–torsion loading conditions. The final outcome of the project is intended to be guidance for fatigue design of small diameter aluminium tubes joined by FSW, and this paper presents information on crack path and defects under the various loading conditions. Crack path analysis was performed using both low magnification stereo microscopy and scanning electron microscopy, in order to identify crack initiation sites, the direction of crack propagation and the interrelated influence of microstructure and weld geometry on the crack initiation path.  相似文献   

9.
The present investigation is concerned with high‐cycle axial fatigue testing of a 2‐mm AA6060‐T6 hybrid metal extrusion & bonding (HYB) butt weld produced in the solid state using AA6082 filler metal addition. The results complement the three‐point bend testing and the tensile testing done in two previous studies. In this study, optical microscope and scanning electron microscope examinations have been carried out to reveal the joint macro/microstructure and document possible surface and root defects deemed to affect fatigue life. In the as‐welded condition, the HYB weld suffers from surface irregularities at the weld face and ‘kissing’ bond formation in the root region. Despite of this, the subsequent testing shows that the fatigue properties exceed those reported for comparable AA6082‐T6 gas metal arc butt welds and matching those reported for corresponding high‐strength laser beam and friction stir weldments.  相似文献   

10.
The principal difficulty when joining magnesium (Mg) and aluminium (Al) lies in the existence of formation of oxide films and brittle intermetallic in the bond region. However diffusion bonding can be used to join these alloys without much difficulty. In this investigation, an attempt was made to develop Temperature–Time and Pressure–Time diagrams for diffusion bonding of AZ80 magnesium (Mg) and AA6061 aluminium (Al) dissimilar materials. The bonding quality of the joints was checked by microstructure analysis and lap shear tensile testing. Based on the results Temperature–Time and Pressure–Time diagrams were constructed. These diagrams will act as reference maps for selecting appropriate diffusion bonding process parameters to join AZ80 magnesium alloy and AA6061 aluminium alloy without trial experiments.  相似文献   

11.
High strength aluminium alloys generally present low weldability because of the poor solidification microstructure, porosity in the fusion zone and loss in mechanical properties when welded by fusion welding processes which otherwise can be welded successfully by comparatively newly developed process called friction stir welding (FSW). This paper presents the effect of post weld heat treatment (T6) on the microstructure and mechanical properties of friction stir welded 7039 aluminium alloy. It was observed that the thermo-mechanically affected zone (TMAZ) showed coarser grains than that of nugget zone but lower than that of heat affected zone (HAZ). The decrease in yield strength of welds is more serious than decrease in ultimate tensile strength. As welded joint has highest joint efficiency (92.1%). Post weld heat treatment lowers yield strength, ultimate tensile strength but improves percentage elongation.  相似文献   

12.
In this study, AA 6013 aluminum plates were butt‐welded with friction stir welding via pin offset technique. Macrostructural observations revealed that kissing bonds, originated from the broken oxide layers, were found to occur in the welded joints. The fracture location of welded joints after tensile tests was found to be outside the joint area, revealing that kissing bonds which were formed in the stir zone exhibited no detrimental effect on the mechanical properties of joints. Microstructural observations revealed that phases belonging to Mg2Si, Al4Cu2Mg8Si7 and Al(MnFe)Si were observed in the x‐ray diffraction pattern of friction stir welded joints. The highest tensile strength with a value of 206 MPa was achieved with the process parameters of 1.5 mm pin offset towards the advancing side and 500 min?1 tool rotational speed, leading the ratio of tensile strength of joint to ultimate tensile strength of base metal, also known as joint efficiency, to reach 74 %.  相似文献   

13.
刘蒙恩  盛光敏  尹丽晶 《功能材料》2012,43(17):2401-2403,2407
采用瞬间液相过冷连接方法对AZ31镁合金/锌中间层/5083铝合金进行连接,利用SEM、XRD、拉伸实验机和微观硬度计对结合界面的微观组织、力学性能进行了表征。结果表明,以锌作中间层,采用瞬间液相过冷连接可以实现AZ31镁合金与5083铝合金的有效连接,接头的最高抗拉强度可以达到38.5MPa,随着低温扩散保温时间的延长,扩散层厚度随之增加,接头的抗拉强度也随之升高;接头的拉伸断口属于脆性断裂,结合界面形成了MgZn2和少量的Mg17Al12金属间化合物;结合界面的微观硬度最高达170。  相似文献   

14.
Aluminium matrix composite is highly demanded in various industries due to its low density and good mechanical properties as most commonly studied for metal matrix composite. The properties of the composite be improved with the addition of reinforcement significantly such as silicon carbide, aluminium oxide, and boron carbide that can be mixed easily to metal matrix composite. The study of crystalline rice husk silica reinforced AA7075 aluminium chips on mechanical properties were investigated. The rice husk ash was burned at 1200 °C and it was characterized in the crystalline phase by conducting x-ray diffraction test. The mechanical properties of aluminium matrix composite were obtained by microhardness and compression tests. Results of mechanical properties for the addition of rice husk silica up to 7.5 wt.% composition of crystalline rice husk silica showed increase value of microhardness and compression strength which are the highest value of 75.94 HV 0.1 and 443 MPa, respectively compared to another aluminium matrix composite. Hence, based on investigation to crystalline rice husk silica reinforced aluminium, it has good potential to improve the mechanical properties of aluminium matrix composite which were dependent to the composition of crystalline rice husk silica reinforcement in aluminium matrix composite.  相似文献   

15.
The microstructure, texture and mechanical properties of AA7003 extrusion sheets processed with different parameters were investigated. Furthermore, the effects of the microstructure and texture on the mechanical properties were discussed. The grain morphology and the texture were analyzed by using a combination of scanning electron microscopy and electron backscatter diffraction. Moreover, the mechanical properties were measured by tensile tests and the tensile fracture morphology was also analyzed by scanning electron microscopy. The results showed that the maximum recrystallization extent occurred at the extrusion process conditions of T = 450 °C and v = 1 mm/s, and the increase in recrystallization extent had a negative effect on the tensile strength. Moreover, a relatively strong recrystallization cube orientation <100> existed when the extrusion temperature was 470 °C, showing a high tensile strength and elongation. Thus, it can be concluded that the cube texture is beneficial to the tensile strength and elongation in extruded AA7003 alloy.  相似文献   

16.
The relatively new welding process friction stir welding (FSW) was applied in this research work to join 6 mm thick dissimilar aluminum alloys AA5083-H111 and AA6351-T6. The effect of tool rotational speed and pin profile on the microstructure and tensile strength of the joints were studied. Dissimilar joints were made using three different tool rotational speeds of 600 rpm, 950 rpm and 1300 rpm and five different tool pin profiles of straight square (SS), straight hexagon (SH), straight octagon (SO), tapered square (TS), and tapered octagon (TO). Three different regions namely unmixed region, mechanically mixed region and mixed flow region were observed in the weld zone. The tool rotational speed and pin profile considerably influenced the microstructure and tensile strength of the joints. The joint which was fabricated using tool rotational speed of 950 rpm and straight square pin profile yielded highest tensile strength of 273 MPa. The two process parameters affected the joint strength due to variations in material flow behavior, loss of cold work in the HAZ of AA5083 side, dissolution and over aging of precipitates of AA6351 side and formation of macroscopic defects in the weld zone.  相似文献   

17.
In this study, 20 mm thick AA7075-T6 alloy plates were joined by friction stir welding. The microstructure and mechanical properties of the nugget zone along the thickness direction from the top to the bottom was investigated. The results showed that the microstructure including the grain size, the degree of dynamic recrystallization, the misorientation angle distribution and the precipitation phase containing its size, type and content exhibited a gradient distribution along the thickness direction. The testing results of mechanical properties of the slices showed that the nugget was gradually weakened along the depth from the top to the bottom. The maximum ultimate tensile strength, yield strength and elongation of the slice in the nugget top-middle are obtained, which are 415 MPa, 255 MPa and 8.1%, respectively.  相似文献   

18.
The possibility of bonding of the two layers of a double oxide film defect when held in a liquid Al–4.5 wt% Mg alloy was investigated. The defect was modelled experimentally by maintaining two aluminium oxide layers in contact with each other in an Al–4.5 wt% Mg liquid alloy at 750 °C from 2 min to 16 h. Any changes in the composition and morphology of these layers were studied by SEM, EDX and XRD. The results showed that in contrast to previous studies reported in the literature on Al–0.3 wt% Mg in which the two layers bonded to each other after a holding time of 5 h, no bonding took place between the two oxide layers even after a holding time of 16 h. Based on the comparison between the two studies, it was concluded that a transformation involving rearrangement of atoms at the interface between the two oxide layers is essential for the bonding to take place between the two oxide layers. This criterion could be used to predict the bonding behaviour of oxide film defects when held in different liquid aluminium alloys, or when subjected to a HIPping process.  相似文献   

19.
The aim of this work is to present a case study relating to the dissimilar friction stir welding (FSW) ability of AA 7075‐T651 and AA 6013‐T6 by applying pin offset technique. An orthogonal array L18 was conducted to perform the overlapped weld seams using three different values of pin offset, welding speed and tool rotational speed along with two different pin profiles determine the impact of welding parameters on the tensile properties of friction stir welded joints. The nugget zone for each of overlapped weld seams exhibited a complex structure and also, the pin offset and profile also were found to have a great impact on the microstructural evolution of the nugget zone. The ultimate tensile strength, elongation at the rapture and bending strength of welded joints were measured in the ranges of 194–215 MPa, 1.79–3.34 % and 203–352 MPa. From the Taguchi based Grey relational analysis, the optimum welding condition was determined for the welded joint performed using a single fluted pin profile with the zero pin offset, tool rotational speed of 630 min?1 and welding speed of 63 mm/min. Microstructural and macro‐structural observations revealed that welded joints exhibiting lower tensile strength are consistent of various types of defects (e. g. cracks, tunnels and cavities). The fracture location of welded joints was found to be on the heat affected zone and between the heat affected zone and AA 6013‐base metal. The tool and pin wear was not observed during the welding applications  相似文献   

20.
Ti2AlC coatings have been fabricated by cold-spray deposition. The microstructure evolution as a function of basic spray parameters temperature and pressure onto AA6060 aluminium alloy and 1.0037 steel substrates has been studied. Adherent and dense 50–80 μm thick Ti2AlC coatings were deposited on soft AA6060 substrates under gas temperature and pressure of 600 °C and 3.4 MPa, respectively, whilst comparable results were obtained on harder 1.0037 steel by using higher temperature (800 °C) and pressure (3.9 MPa).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号