共查询到20条相似文献,搜索用时 15 毫秒
1.
基于小波变换的支持向量机短期负荷预测 总被引:3,自引:2,他引:3
提出了一种基于小波分解和支持向量机的短期负荷预测方法.首先利用小波变换把负荷序列分解成不同频段的子序列,对高频序列利用软阀值消噪法去除负荷噪声;对降噪后的负荷序列利用不同的小波进行分解.然后用相匹配的支持向量机模型预测各子序列.仿真结果表明db4小波的预测精度最高,平均绝对预测误差为1.6692%.所得结果同直接用支持向量机预测结果进行比较表明,该方法是有效的. 相似文献
2.
提高日负荷预测精度的关键在于数据预处理。提出了基于联合数据挖掘技术的电力负荷优选组合预测方法。通过多种挖掘技术寻找与预测日同等气象类型的多个历史日负荷,由此进一步提取数据,组成规律强化、干扰弱化、具有高度相似气象特征的数据序列,对此再构建优选组合预测模型。 相似文献
3.
An adaptive blind support vector machine equalizer ( ABSVME ) is presented in this paper.The method is based upon least square support vector machine ( LSSVM ),and stems from signal feature reconstruct... 相似文献
4.
钢铁企业电力负荷作为电力负荷的重要组成部分,钢铁电力负荷的准确预测对于提高电力负荷预测精度具有重要意义。为了实现钢铁电力负荷的中长期预测,本文选取了经济因素和社会因素作为自变量,引入带有惯性权重的粒子群算法(WPSO)对传统的最小二乘支持向量机智能预测模型(LSSVM)参数进行优化,并利用某地区钢铁电力负荷样本数据进行验证,拟合结果显示,经过粒子群算法优化后的最小二乘智能向量机算法预测精度更高,收敛速度更快,具有良好的推广性和适应性。 相似文献
5.
Firstly,general regression neural network(GRNN) was used for variable selection of key influencing factors of residential load(RL) forecasting.Secondly,the key influencing factors chosen by GRNN were used as the input and output terminals of urban and rural RL for simulating and learning.In addition,the suitable parameters of final model were obtained through applying the evidence theory to combine the optimization results which were calculated with the PSO method and the Bayes theory.Then,the model of PSO-... 相似文献
6.
贝叶斯框架下最小二乘支持向量机的中长期电力负荷组合预测 总被引:4,自引:0,他引:4
影响中长期负荷变化的因素较多,单一预测模型很难满足预测需要,组合预测能够较好地解决单一模型的缺点,借鉴单一预测模型的优点。提出贝叶斯框架下最小二乘支持向量机(LS-SVM)中长期负荷组合预测模型,利用结构化风险原则代替经验风险最小化,挖掘各单一预测模型的信息,以单一模型的预测数作为组合预测输入样本,通过贝叶斯后验理论确定最小二乘支持向量机参数,建立组合预测模型进行预测。通过算例表明,提出的模型具有较高的预测精度,能够较好地解决小样本下的预测问题,具有良好的泛化能力和预测精度。 相似文献
7.
鉴于通信信号的调制方式识别技术在非合作通信中具有重要的地位,针对美军Link-11、Link-16、Link-22、CDL数据链信号的调制方式(MSK、BPSK、QPSK、OQPSK、π/4-DQPSK、8PSK),研究了各调制信号在航空信道条件下的平方谱、高阶累积量、四次方谱、码元速率等特征参数的提取.然后,运用支持向量机(SVM)分类器对六种数据链信号的调制方式进行了识别,并利用粒子群优化(PSO)算法对支持向量机分类器参数进行优化.仿真结果表明,相比决策树分类器,SVM分类器在低信噪条降下提高了整体识别率;采用PSO算法则减少了SVM分类器参数选择的盲目性. 相似文献
8.
针对传统的灰色系统中预测模型涉及相关因素多,预测效率与精度不足等问题,结合粗糙集理论和支持向量回归机方法,提出了一种改进的预测优化算法。该模型算法首先利用属性约简技术解决影响因子不相容性问题并有效缩减了影响预测值的因子空间,降低计算的复杂性;然后采用灰色模型进行数据预测,并将预测结果作为支持向量机的输入,进而求解优化模型的预测值,最后采用1990~2010年我国人口数据对我国人口进行预测。实验结果表明该预测优化模型在预测效率和精度方面具有较好的表现。 相似文献
9.
和声搜索最小二乘支持向量机预测模型及其应用 总被引:3,自引:0,他引:3
为了改进目前最小二乘支持向量机(LSSVM)参数选择的盲目性,将和声搜索(Harmony Search)算法引入到最小二乘支持向量机中来.利用具有全局优化功能的和声搜索算法对LSSVM中正则化参数γ和核函数参数σ的进行自动优选,提出了和声搜索最小二乘支持向量机(Harmony Search Least Squares Support Vector Machine,HS-LSSVM)算法.通过对丰满大坝位移的建模预测并和BP神经网络模型及传统统计回归模型的分析比较,表明HS-LSSVM模型具有更小的预测误差和更高的预测精度. 相似文献
10.
面向线性不可分的未知格式网络数据,提出了一种基于支持向量机的无监督特征选择算法。该算法通过非线性映射函数将不可分的网络数据映射到高维空间中,然后在高维空间中进行无监督的特征选择。该算法在特征选择之前不需要人工构造候选特征集合,直接从原始网络数据中自动地选择关键特征。利用人工数据集和网络数据集进行的实验结果表明:本文算法在特征选择可行性和有效性方面都有良好的表现。 相似文献
11.
采用分布式过滤的方法防御分布式拒绝服务(DDoS)攻击,通过将分布式防御合作限定在互联网自治域(AS)内,为应对选取了合适的网络范围,且考虑了带宽和受害机处理能力这2类资源及其相互作用.基于支持向量机(SVM)的多资源最大最小公平(SMMF)算法,根据受害端流量情况动态调整自治域边界的过滤器参数,保证了多资源最大最小公平,以达到较优的防御效果.模拟实验表明,该算法在具一般性的攻击场景下能有效抑制攻击流量,且在已有方法失效的情况下仍能保证合法流量吞吐量维持在正常水平.在路由器上实现了该过滤器,结果表明,即使安装上千个过滤器也只需极少量的内存,且仍能保证路由器的正常吞吐率. 相似文献
12.
组合负荷预测模型能够充分利用数据信息,有效降低预测风险,改善预测效果,在中长期负荷预测中获得了广泛应用.而目前的组合预测模型实质大都为单-预测模型的加权平均,没有能够充分发挥综合预测的优势,应用数据分组处理方法(GMDH)进行组合预测,在充分考虑各单一模型特点和预测效果的基础上,形成多元非线性组合预测模型,自动从数据中挖掘出重要信息,克服了传统组合预测模型建模中的主观因素影响,可以改善预测精度.并将该预测模型应用于实际电网,计算结果表明该模型有效提高了预测精度,适用于中长期负荷预测. 相似文献
13.
将模糊域分布和支持向量机相结合,提出了一种故障诊断的新方法,该方法将模糊域分布中的局部能量作为特征输入到支持向量机的多故障分类器进行故障识别.利用模糊域分布可以很好地刻画信号的时频局部化特征,与时-频平面特征提取相比,又可大大降低数据维数.对于不同类型的核函数分布,将其诊断结果进行比较,试验结果表明,基于模糊域的支持向量机故障分类无需核函数滤波就能取得最好的分类效果. 相似文献
14.
By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and
using the improved PSO to optimize the key parameters of the support vector machine (SVM) forecasting model, an improved SVM
model named CPSO-SVM model was proposed. The new model was applied to predicting the short term load, and the improved effect
of the new model was proved. The simulation results of the South China Power Market’s actual data show that the new method
can effectively improve the forecast accuracy by 2.23% and 3.87%, respectively, compared with the PSO-SVM and SVM methods.
Compared with that of the PSO-SVM and SVM methods, the time cost of the new model is only increased by 3.15 and 4.61 s, respectively,
which indicates that the CPSO-SVM model gains significant improved effects.
Foundation item: Project(70572090) supported by the National Natural Science Foundation of China 相似文献
15.
基于SVM的软件质量评价 总被引:1,自引:0,他引:1
为了提高软件质量评价的准确性,参考各软件质量模型中的质量因素,构建评价指标体系并构建基于SVM的软件质量评价模型,通过在WEKA下实例仿真,基于SVM的评价结果与期望的结果是一致的,表明该方法能够准确、科学和客观地评价软件质量。 相似文献
16.
As the existing heating load forecasting methods are almostly point forecasting,an interval forecasting approach based on Support Vector Regression (SVR) and interval estimation of relative error is proposed in this paper.The forecasting output can be defined as energy saving control setting value of heating supply substation;meanwhile,it can also provide a practical basis for heating dispatching and peak load regulating operation.By means of the proposed approach,SVR model is used to point forecasting and the error interval can be gained by using nonparametric kernel estimation to the forecast error,which avoid the distributional assumptions.Combining the point forecasting results and error interval,the forecast confidence interval is obtained.Finally,the proposed model is performed through simulations by applying it to the data from a heating supply network in Harbin,and the results show that the method can meet the demands of energy saving control and heating dispatching. 相似文献
17.
粗支持向量机分类建模方法 总被引:2,自引:0,他引:2
为了克服样本模式的复杂性、噪声的影响以及信息的不完整性问题,利用粗糙集和支持向量机(SVM)的优点,把粗糙集理论用于二分类球形SVM,提出一种称为粗支持向量机分类建模方法.粗糙集具有刻画不确定、不完整数据和复杂模式的能力,分类结果能够体现出数据的不确定性,但是它不仅不具备良好的学习能力,而且也不能保证分类模型具有良好的推广能力;SVM具有良好的推广性能,但是对不确定数据的建模能力较差.本文把分类结果分为正域、边界域和负域,由此来判断不确定数据样本的分类结果的不确定性程度.通过调整参数来调节边界的宽度和允许建模的在野点样本的比例,提高分类模型的灵活性.仿真结果说明了算法的有效性. 相似文献
18.
为了扩展支持向量机在大规模数据集和成批出现数据领域的应用,提出了一种基于支持向量机的增量式学习算法.利用标准的支持向量机算法训练得到初始的目标概念,通过增量式步骤不断更新初始的目标概念.更新模型是求解一个与标准支持向量机具有类似的数学形式的凸二次规划问题.证明了在可分情况下,如果新增加的样本不是位于边界区,那么增量式过程既不会改变分类平面也不会改变分类平面的表达.与现有的增量式支持向量机算法相比,该算法无需额外计算就可实现增量式的逆过程并且训练时间与增量式步骤数成反比.实验结果表明,该算法满足稳定性、能够不断改进性能以及性能回复三个准则. 相似文献
19.
首先介绍了基于统计学习理论的一种新的机器学习技术——支持向量机(Support Vector Machine,SVM),并针对目前支持向量机参数选择时人为选择的盲目性,将具有良好优化性能的混沌优化(Chaos Optimi-zation)技术应用到支持向量机惩罚函数和核函数参数的优化,提出了混沌优化支持向量机(Chaos Optimization Support Vector Machine,COSVM)方法.根据丰满大坝1997-2004年的实际监测数据,建立了混沌优化支持向量机大坝安全监控预测模型,进行了与统计回归模型和BP神经网络模型的分析比较,结果表明,COSVM模型具有更高的预测精度,同时在较长时段的预测中,COSVM模型也表现出更好的泛化推广性能. 相似文献
20.
短期负荷预测是电力系统调度的基础,其预测精度直接影响系统运行的安全性和经济性.传统预测方法在对影响负荷的不确定因素的模拟方面主要采用概率方法和模糊集方法,有局限性.为此,仍然有必要探索新的、更合适的方法.在此背景下,考虑采用混沌时间序列来进行短期负荷预测.首先,利用混沌时间序列理论对负荷时间序列进行相空间重构,同时提取吸引子的分形维数,结果表明负荷时间序列具有混沌特性;并通过分析时间序列连续功率谱和计算最大Lyapunov指数,进一步证实了短期电力负荷时间序列具有混沌特性.之后,通过采用局域线性预测模型和广义自由度方法确定最近邻域点数,来进行短期负荷预测.最后,以某实际电力系统2007年3月1日至5月14日的负荷数据作为历史样本,对次日的负荷进行预测,说明了所提出的方法的基本特征. 相似文献