首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
A newly developed computational approach is proposed in the paper for the analysis of multiple crack problems based on the eigen crack opening displacement (COD) boundary integral equations. The eigen COD particularly refers to a crack in an infinite domain under fictitious traction acting on the crack surface. With the concept of eigen COD, the multiple cracks in great number can be solved by using the conventional displacement discontinuity boundary integral equations in an iterative fashion with a small size of system matrix to determine all the unknown CODs step by step. To deal with the interactions among cracks for multiple crack problems, all cracks in the problem are divided into two groups, namely the adjacent group and the far-field group, according to the distance to the current crack in consideration. The adjacent group contains cracks with relatively small distances but strong effects to the current crack, while the others, the cracks of far-field group are composed of those with relatively large distances. Correspondingly, the eigen COD of the current crack is computed in two parts. The first part is computed by using the fictitious tractions of adjacent cracks via the local Eshelby matrix derived from the traction boundary integral equations in discretized form, while the second part is computed by using those of far-field cracks so that the high computational efficiency can be achieved in the proposed approach. The numerical results of the proposed approach are compared not only with those using the dual boundary integral equations (D-BIE) and the BIE with numerical Green's functions (NGF) but also with those of the analytical solutions in literature. The effectiveness and the efficiency of the proposed approach is verified. Numerical examples are provided for the stress intensity factors of cracks, up to several thousands in number, in both the finite and infinite plates.  相似文献   

2.
Fatigue crack growth with fiber failure in metal-matrix composites   总被引:2,自引:0,他引:2  
Crack growth during the fatigue of fiber-reinforced metal-matrix composites can be predicted analytically by determining the reduction in the crack tip stress intensity range resulting from fiber bridging. Various canonical functions exist that relate the crack tip stress intensity range to bridged crack geometries and loading for both infinite and finite width specimens; however, comprehensive crack growth predictions incorporating fiber failure require knowledge of the maximum fiber stress in the bridged zone for all notch sizes and crack lengths. Previous modeling efforts have been extended to predict complete growth curves with fiber failure for specimens of finite width. Functions for maximum fiber stresses in the bridged zone are presented here for a center crack in tension and edge cracks in tension and bending. The rapid increase in crack growth when fibers fail emphasizes the importance of determining the loads and notch sizes that mark the beginning of fiber failure. Critical loads for given notch sizes and fiber strengths are easily determined for finite width specimens using the functions presented in this work.  相似文献   

3.
Modes I, II and III stress intensity factors for a crack of arbitrary planar shape near a bimaterial interface are calculated. The solution utilizes the body-force method and requires Green's functions for perfectly bonded elastic half-spaces. The formulation leads to a system of two-dimensional singular integral equations whose solutions represent the three modes of crack opening displacement. Numerical examples of a semicircular or semielliptical crack terminating at the interface and circular or elliptical cracks contained in one material are given for both internal pressure and farfield tension.  相似文献   

4.
A versatile method is presented to derive the extended displacement discontinuity Green's functions or fundamental solutions by using the integral equation method and the Green's functions of the extended point forces. In particular, the three-dimensional (3D) transversely isotropic magneto-electro-elastic problem is used to demonstrate the method. On this condition, the extended displacement discontinuities include the elastic displacement discontinuities, the electric potential discontinuity and the magnetic potential discontinuity, while the extended forces include the point forces, the point electric charge and the point electric current. Based on the obtained Green's functions, the extended Crouch fundamental solutions are derived and an extended displacement discontinuity method is developed for analysis of cracks in 3D magneto-electro-elastic media. The extended intensity factors of two coplanar and parallel rectangular cracks are calculated under impermeable boundary condition to illustrate the application, accuracy and efficiency of the proposed method.  相似文献   

5.
A plane electroelastic problem involving planar cracks in a piezoelectric body is considered. The deformation of the body is assumed to be independent of time and one of the Cartesian coordinates. The cracks are traction free and are electrically either permeable or impermeable. Numerical Green's functions which satisfy the boundary conditions on the cracks are derived using the hypersingular integral approach and applied to obtain a boundary integral solution for the electroelastic crack problem considered here. As the conditions on the cracks are built into the Green's functions, the boundary integral solution does not contain integrals over the cracks. It is used to derive a boundary element procedure for computing the crack tip stress and electrical displacement intensity factors.  相似文献   

6.
This paper looks at stress intensity factors of cracks in resistance spot welded joints. Stress intensity factors have been used in the past to predict fatigue crack propagation life of resistance spot welds. However, the stress intensity factors from all previous work was based on assumed initial notch cracks at the nugget, parallel to the sheets. Physical evidence shows, however, that fatigue cracks in spot welds propagate through the thickness of the sheets rather than through the nugget. In this work, stress intensity factors of assumed notch cracks and through thickness cracks in tensile shear (TS) and modified coach peel (MCP) specimens were determined by the finite element method. The finite element results from the assumed notch cracks were compared with the results in the literature and were found to be in agreement with the results from Zhang’s equations [Int. J. Fract. 88 (1997) 167]. The stress intensity factors of assumed notch cracks were found to be different from those of through thickness cracks. To date, no analytic equations for stress intensity factors of through thickness cracks in spot welds have been published. In the current work, simple equations are proposed to estimate the KI and KII values of through thickness cracks in TS and MCP specimens.  相似文献   

7.
This paper looks at stress intensity factors of cracks in resistance spot welded joints. Stress intensity factors have been used in the past to predict fatigue crack propagation life of resistance spot welds. However, the stress intensity factors from all previous work was based on assumed initial notch cracks at the nugget, parallel to the sheets. Physical evidence shows, however, that fatigue cracks in spot welds propagate through the thickness of the sheets rather than through the nugget. In this work, stress intensity factors of assumed notch cracks and through thickness cracks in tensile shear (TS) and modified coach peel (MCP) specimens were determined by the finite element method. The finite element results from the assumed notch cracks were compared with the results in the literature and were found to be in agreement with the results from Zhang’s equations [Int. J. Fract. 88 (1997) 167]. The stress intensity factors of assumed notch cracks were found to be different from those of through thickness cracks. To date, no analytic equations for stress intensity factors of through thickness cracks in spot welds have been published. In the current work, simple equations are proposed to estimate the KI and KII values of through thickness cracks in TS and MCP specimens.  相似文献   

8.
ABSTRACT Three-dimensional finite element analyses have been conducted to calculate the stress intensity factors for deep semi-elliptical cracks in flat plates. The stress intensity factors are presented for the deepest and surface points on semi-elliptic cracks with a/t -values of 0.9 and 0.95 and aspect ratios ( a/c ) from 0.05 to 2. Uniform, linear, parabolic or cubic stress distributions were applied to the crack face. The results for uniform and linear stress distributions were combined with corresponding results for surface cracks with a/t = 0.6 and 0.8 to derive weight functions over the range 0.05 ≤  a/c  ≤ 2.0 and 0.6 ≤  a/t  ≤ 0.95. The weight functions were then verified against finite element data for parabolic or cubic stress distributions. Excellent agreements are achieved for both the deepest and surface points. The present results complement stress intensity factors and weight functions for surface cracks in finite thickness plate developed previously.  相似文献   

9.
Abstract— A Fourier series approach is proposed to calculate stress intensity factors using weight functions for semi-elliptical surface cracks in flat plates subjected to two-dimensional stress distributions. The weight functions were derived from reference stress intensity factors obtained by three-dimensional finite element analyses. The close form weight functions derived are suitable for the calculation of stress intensity factors for semi-elliptical surface cracks in flat plates under two-dimensional stress distributions with the crack aspect ratio in the range of 0.1 ≤ a/c ≤ 1 and relative depth in the range of 0 ≤ a/t ≤ 0.8. Solutions were verified using several two-dimensional non-linear stress distributions; the maximum difference being 6%.  相似文献   

10.
In this paper we give the theoretical foundation for a dislocation and point-force-based approach to the special Green's function boundary element method and formulate, as an example, the special Green's function boundary element method for elliptic hole and crack problems. The crack is treated as a particular case of the elliptic hole. We adopt a physical interpretation of Somigliana's identity and formulate the boundary element method in terms of distributions of point forces and dislocation dipoles in the infinite domain with an elliptic hole. There is no need to model the hole by the boundary elements since the traction free boundary condition there for the point force and the dislocation dipole is automatically satisfied. The Green's functions are derived following the Muskhelishvili complex variable formalism and the boundary element method is formulated using complex variables. All the boundary integrals, including the formula for the stress intensity factor for the crack, are evaluated analytically to give a simple yet accurate special Green's function boundary element method. The numerical results obtained for the stress concentration and intensity factors are extremely accurate. © 1997 John Wiley & Sons, Ltd.  相似文献   

11.
Part 1 of this paper reports on the formulation of an advanced boundary—integral equation model for fracture mechanics analysis of cracked plates, subject to elastoplastic behaviour or other, related body force problems. The basis of this formulation contrasts with other BIE elastoplastic formulations in the use of the Green's function for an infinite plane containing a stress free crack. This Green's function formulation assures that the total elastic strain field for the crack problem is accurately imbedded in the numerical model. The second part of this paper reports on the numerical implementation of this algorithm, as currently developed. The anelastic strain field (residual strains, thermal strains, plastic strains, etc.) is approximated as piecewise constant, while the boundary data is modelled with linear interpolations. An iteration solution scheme is adopted which eliminates the need for recalculation of the BIE matrices. The stability and accuracy of the algorithm are demonstrated for an uncracked, notch geometry, and comparison to finite element results is made for the centre-cracked panel. The data shows that even the crude plastic strain model applied is capable of excellent resolution of crack tip plastic behaviour.  相似文献   

12.
The application of the method of fundamental solutions (MFS), a mesh-free technique, to solve cracked Reissner's plates is discussed in this work. Here, the numerical Green's function (NGF) previously developed by the authors is used as the fundamental solution required by the method. Stress intensity factors or the related force intensity factors are obtained using the generalized crack openings at a single point near the tip, computed through a summation of the fundamental generalized openings at that point weighted by their influence factors. Despite the ill-conditioning of the equations system, which may require appropriate handling to solve (such as the singular value decomposition method), examples show good results for problems with embedded cracks. The method can be a good option to evaluate stress intensity factors of given problems due to its simple and intuitive implementation.  相似文献   

13.
The method of singular integral equations was applied to determine the stress intensity factors for a system of cracks emanating from the vertex of an infinite rounded V-notch subjected to symmetric loading. The numerical values were obtained for two cases—the case of a single crack and the case of a system of two cracks of equal length. The influence of the rounding radius of the vertex of the notch and its opening angle on the stress intensity factors at the crack tips was analyzed. The solution obtained as a result has a general nature—the stress intensity factors at the crack tip are expressed as a function of the V-notch stress intensity factor and, hence, this solution could be treated as an asymptotic relation for finite bodies with deep V-notches subjected to symmetric loads.  相似文献   

14.
This study focuses on the application of boundary element methods for linear fracture mechanics of two-dimensional piezoelectric solids. A complete set of piezoelectric Green's functions, based on the extended Lekhnitskii's formalism and distributed dislocation modeling, are presented. Special Green's functions are obtained for an infinite medium containing a conducting crack or an impermeable crack. The numerical solution of the boundary integral equation and the computation of fracture parameters are discussed. The concept of crack closure integral is utilized to calculate energy release rates. Accuracy of the boundary element solutions is confirmed by comparing with analytical solutions reported in the literature. The present scheme can be applied to study complex cracks such as branched cracks, forked cracks and microcrack clusters.  相似文献   

15.
The three-dimensional Green's functions in anisotropic elastostatic multilayered composites (MLCs) obtained within the framework of generalized Stroh formalism are expressed as two-dimensional integrals of Fourier inverse transform over an infinite plane. Their numerical evaluations involve tremendous computational efforts in particular in the presence of various singularities and near-singularities due to the presence of material mismatches across interfaces. The present paper derives the complete set of the Green's functions including displacement, stress and their derivatives with respect to source coordinates using a novel and computationally efficient approach. It is proposed for the first time that the Green's functions in the MLCs are expressed as a sum of a special solution and a general-part solution, with the former consisting of the first few terms of the trimaterial expansion solution around a source load. Since the zero-order term contains the singularity corresponding to the homogeneous full-space solution and can be evaluated analytically, and the other higher-order terms contain most of the near-singular behaviors and can be reduced to a line integral over a finite interval, the general-part solution becomes regular and the Green's functions overall can be evaluated efficiently. As an example, the Green's functions in a five-layered orthortropic plate are evaluated to demonstrate the efficiency of the proposed approach. Also, the detailed characteristics of these Green's functions are examined in both the transform- and physical-domains. These Green's functions are essential in developing the boundary-integral-equation formulation and numerical boundary element method for composite laminate problems involving regular and cracked geometries.  相似文献   

16.
A numerical method for calculating weight functions for surface cracks in plates and shells is proposed. Thick-shell finite elements are used to create the discrete model of a body with a through-wall flaw. Line-spring elements transform the through-wall flaw into a surface crack. A quadratic line-spring element is presented. Weight functions for some semielliptical surface cracks in a plate have been calculated. The weight functions obtained may be used for computing stress intensity factors related to two-dimensional stress fields at the crack surface.  相似文献   

17.
A path-independent integral is introduced for calculating stress intensity factors. The derivation of the integral is based on the application of the known Bueckner's fundamental field solution for a crack in an infinite body and on the reciprocal theorem. The method was applied to two-dimensional linear elastic mixed-mode crack problems. The key advantage of the present path-independent integral is that the stress intensity factor components for any irregular cracked geometry under any kind of loading can be easily obtained by a contour integral around the crack tip. The method is simple to implement and only the far field displacements and tractions along the contour must be known. The required stress analysis can be made by using any analytical or numerical method, e.g. the finite element method, without special consideration of the modelling of crack tip singularity. The application of this integral is also independent of the crack type, that is, there is no difference between an edge crack and an embedded crack, provided that the crack tip asymptotic behaviour exists.  相似文献   

18.
With the aid of the elastic–viscoelastic correspondence principle, the boundary element developed for the linear anisotropic elastic solids can be applied directly to the linear anisotropic viscoelastic solids in the Laplace domain. Green's functions for the problems of two-dimensional linear anisotropic elastic solids containing holes, cracks, inclusions, or interfaces have been obtained analytically using Stroh's complex variable formalism. Through the use of these Green's functions and the correspondence principle, special boundary elements in the Laplace domain for viscoelastic solids containing holes, cracks, inclusions, or interfaces are developed in this paper. Subregion technique is employed when multiple holes, cracks, inclusions, and interfaces exist simultaneously. After obtaining the physical responses in Laplace domain, their associated values in time domain are calculated by the numerical inversion of Laplace transform. The main feature of this proposed boundary element is that no meshes are needed along the boundary of holes, cracks, inclusions and interfaces whose boundary conditions are satisfied exactly. To show this special feature by comparison with the other numerical methods, several examples are solved for the linear isotropic viscoelastic materials under plane strain condition. The results show that the present BEM is really more efficient and accurate for the problems of viscoelastic solids containing interfaces, holes, cracks, and/or inclusions.  相似文献   

19.
A plane electro-elastostatic problem involving arbitrarily located planar stress free cracks which are electrically semi-permeable is considered. Through the use of the numerical Green's function for impermeable cracks, the problem is formulated in terms of boundary integral equations which are solved numerically by a boundary element procedure together with a predictor–corrector method. The crack tip stress and electric displacement intensity factors can be easily computed once the boundary integral equations are properly solved.  相似文献   

20.
In fatigue crack growth analysis it is essential to know the stress distributions in the neighbourhood of stress raisers. If such distributions ahead of the uncracked notch are known, stress intensity factors may be obtained via the weight function or other methods. The procedure described in the present paper reconsiders the principal elastic stress expressions already reported by the authors for infinite plates with semi-infinite symmetric V-shaped notches and adapts them to some practical cases, in which the mutual influence of the notches as well as that of the plate finite size play an important role in stress distributions. The aim is therefore to give an approximate close-form solution for the longitudinal stress, valid for the entire ligament length, namely from notch tip to notch tip. Theoretical and numerical stress values are compared on this line, examining plates with semicircular, V and U-shaped notches subjected to remote uniaxial tension. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号