首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Internucleosomal cleavage of DNA has often been regarded as the biochemical hallmark of apoptosis. We now demonstrate in isolated rat liver nuclei that DNA is initially cleaved into > or = 700, 200-250 kbp and 30-50 kbp fragments via a multi-step process, which is activated by Mg2+ and Mg2+(+)Ca2+ but not by Ca2+ alone. The subsequent internucleosomal cleavage requires both cations. These findings demonstrate that a key event in the apoptotic process is the fragmentation of DNA into large kbp fragments by either a Mg(2+)-dependent process (which can be potentiated by Ca2+) and/or by a Ca2+/Mg2+ activated endonuclease(s).  相似文献   

2.
The effect of regucalcin, a calcium-binding protein isolated from rat liver cytoplasm, on ATP-dependent calcium transport in the plasma membrane vesicles of rat liver was investigated. (Ca(2+)- Mg2+)-ATPase activity in the liver plasma membranes was significantly increased by the presence of regucalcin (0.1-0.5 microM) in the enzyme reaction mixture. This increase was completely inhibited by the presence of sulfhydryl group modifying reagent Nethylmaleimide (5.0 mM NEM) or digitonin (0.04%), which can solubilize the membranous lipids. When ATP-dependent calcium uptake by liver plasma membrane vesicles was measured by using 45CaCl2, the presence of regucalcin (0.1-0.5 microM) in the reaction mixture caused a significant increase in the 45Ca2+ uptake. This increase was about 2-fold with 0.5 microM regucalcin addition. An appreciable increase was seen by 5 min incubation with regucalcin addition. The regucalcin-enhanced ATP-dependent 45Ca2+ uptake by the plasma membrane vesicles was completely inhibited by the presence of NEM (5.0 mM) or digitonin (0.04%). These results demonstrate that regucalcin activates (Ca(2+)-Mg2+)-ATPase in the liver plasma membranes and that it can stimulate ATP-dependent calcium transport across the plasma membranes.  相似文献   

3.
Spontaneous formation of giant unilamellar liposomes in a gentle hydration process, as well as the adhesion energy between liposomal membranes, has been found to be dependent on the concentration of divalent alkali cations, Ca2+ or Mg2+, in the medium. With electrically neutral phosphatidylcholine (PC), Ca2+ or Mg2+ at 1-30 mM greatly promoted liposome formation compared to low yields in nonelectrolyte or potassium chloride solutions. When negatively charged phosphatidylglycerol (PG) was mixed at 10%, the yield was high in nonelectrolytes but liposomes did not form at 3-10 mM CaCl2. In the adhesion test with micropipette manipulation, liposomal membranes adhered to each other only in a certain range of CaCl2 concentrations, which agreed with the range where liposome did not form. The adhesion range shifted to higher Ca2+ concentrations as the amount of PG was increased. These results indicate that the divalent cations bind to and add positive charges to the lipids, and that membranes are separated and stabilized in the form of unilamellar liposomes when net charges on the membranes produce large enough electrostatic repulsion. Under the assumption that the maximum of adhesion energy within an adhesive range corresponds to exact charge neutralization by added Ca2+, association constants of PC and PG for Ca2+ were estimated at 7.3 M(-1) and 86 M(-1), respectively, in good agreement with literature values.  相似文献   

4.
Metal ion requirements for RNA binding, cleavage, and ligation by the hairpin ribozyme have been analyzed. RNA cleavage is observed when Mg2+, Sr2+, or Ca2+ are added to a 40 mM Tris-HCl buffer, indicating that these divalent cations were capable of supporting the reaction. No reaction was observed when other ions (Mn2+, Co2+, Cd2+, Ni2+, Ba2+, Na+, K+, Li+, NH4+, Rb+, and Cs+) were tested. In the absence of added metal ions, spermidine can induce a very slow ribozyme-catalyzed cleavage reaction that is not quenched by chelating agents (EDTA and EGTA) that are capable of quenching the metal-dependent reaction. Addition of Mn2+ to a reaction containing 2 mM spermidine increases the rate of the catalytic step by at least 100-fold. Spermidine also reduces the magnesium requirement for the reaction and strongly stimulates activity at limiting Mg2+ concentrations. There are no special ionic requirements for formation of the initial ribozyme-substrate complex--analysis of complex formation using native gels and kinetic assays shows that the ribozyme can bind substrate in 40 mM Tris-HCl buffer. Complex formation is inhibited by both Mn2+ and Co2+. Ionic requirements for the ribozyme-catalyzed ligation reaction are very similar to those for the cleavage reaction. We propose a model for catalysis by the hairpin ribozyme that is consistent with these findings. Formation of an initial ribozyme-substrate complex occurs without the obligatory involvement of divalent cations. Ions (e.g., Mg2+) can then bind to form a catalytically proficient complex, which reacts and dissociates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Zinc is an essential trace element necessary to life. This metal may exert some of its physiological effects by acting directly on cellular membranes, either by altering permeability or by modulating the activity of membrane-bound enzymes. On the other hand, calcium is an essential element in a wide variety of cellular activities. The aim of the present work was to study a possible interaction between zinc and calcium on intestinal transport of D-galactose in jejunum of rabbit in vitro. In media with Ca2+, when ZnCl2 was present at 0.5 or 1 mM, zinc was found to reduce the D-galactose absorption significantly. In Ca(2+)-free media, where CaCl2 was omitted and replaced isotonically with choline chloride, the sugar transport was not modified by zinc. Verapamil at 10(-6) M (blocking mainly Ca2+ transport) did not modify the inhibitory effect of zinc on D-galactose transport. When 10(-6) M of A 23187 (Ca(2+)-specific ionophore) was added with/without Ca2+ to the media, ZnCl2 produced no change in sugar transport. These results could suggest a possible interaction of calcium and zinc for the same chemical groups of membrane, which could affect the intestinal absorption of sugars.  相似文献   

6.
The effects of temperature, dielectric permeability and ionic strength on the activity of purified Ca2+, Mg(2+)-ATPase solubilized from myometrial sarcolemma have been studied under saturation of the enzyme with Ca2+, Mg2+ and ATP. The values of activation energy calculated from Arrhenius plots for both ATP hydrolase reactions catalysed by solubilized and reconstituted into azolectin liposomes Ca2+, Mg(2+)-ATPase and Mg2+, ATP-dependent Ca2+ transport by the reconstituted enzyme were 56.4 +/- 1.5, 68.0 +/- 5.1 and 63.1 +/- 2.9 kJ/mol, respectively. Analysis of experimental data in terms of the Laidler-Scatchard and Bronsted-Bjerrum theories revealed that the separation of the reaction products--the chelate MgADP complex--from the active site of the enzyme bearing one unity positive charge is the limiting step of the Ca2+, Mg(2+)-dependent enzymatic ATP-hydrolysis under conditions of substrate saturation. The values of the electrostatic components of the free energy, enthalpy and entropy of activation of the ATP hydrolase reaction were 46.6 +/- 0.3 kJ/mol, -(20.5 +/- 0.4) kJ/mol and -(214.2 +/- 4.3) J/(mol.degrees K), respectively. The nonelectrostatic component of activation enthalpy was 76.9 kJ/mol. The results obtained suggest that changes in polarity of the incubation medium markedly affect the activity of transport Ca2+, Mg(2+)-ATPase solubilized from smooth muscle cell plasma membranes and that the electrostatic interactions between the enzyme active site and specific reagents (MgADP, in particular) significantly contribute to the energetics of the ATP hydrolase reaction.  相似文献   

7.
The kinetic properties of Mg(2+)-ATPase (EC 3.6.1.3) from myometrium cell plasma membranes have been studied. Under conditions of enzyme saturation with ATP (0.5-1.0 mM) or Mg2+ (1.0-5.0 mM) the initial maximal rates of the Mg(2+)-dependent enzymatic ATP hydrolysis, V0 ATP and V0 Mg, are 27.4 +/- 3.3 and 25.2 +/- 4.1 mumol Pi/hour/mg of protein, respectively. The apparent Michaelis constant, Km, for ATP and of the apparent activation constant, K alpha, for Mg2+ are equal to 28.1 +/- 2.6 and 107.0 +/- 26.0 microM, respectively. The bivalent metal ions used at 1.0 mM suppress the Mg(2+)-dependent hydrolysis of ATP whose efficiency decreases in the following order: Cu2+ > Zn2+ = Ni2+ > Mn2+ > Ca2+ > Co2+. Alkalinization of the incubation medium from pH 6.0 to pH 8.0 stimulates the Mg(2+)-dependent hydrolysis of ATP. It has been found that Mg(2+)-ATPase has the properties of an H(+)-sensitive enzymatic sensor which is characterized by a linear dependence between the initial maximal rate of the reaction, V0, and the pH value. The feasible role of plasma membrane Mg(2+)-ATPase in some reactions responsible for the control of proton and Ca2+ homeostasis in myometrium cells has been investigated.  相似文献   

8.
Small cell lung cancer cells (OC-NYH-VM) were permeabilized and treated with different nucleases. The long-range distribution of DNA cleavage sites in the amplified c-myc gene locus was then analyzed by pulsed field gel electrophoretic separation of the released 50-kilobase to 1-megabase DNA fragments followed by indirect end labeling. Exogenous DNase I and nucleases specific for the single-stranded DNA were found to generate similar nonrandom patterns of large DNA fragments. The cleavage sites were located close to or even colocalized with matrix attachment regions, which were mapped independently using a recently developed procedure for DNA loop excision by DNA topoisomerase II-mediated DNA cleavage. Endogenous acidic nuclease with the properties of DNase II also digested DNA preferentially in proximity to the matrix attachment regions, generating characteristic patterns of excised DNA loops and their oligomers. A similar, although less specific, pattern of DNA fragmentation was observed after incubation of permeabilized cells under conditions favoring the activity of endogenous neutral Ca(2+)- and Mg(2+)-dependent nucleases. These findings are discussed in the context of the current model of the spatial domain organization of eukaryotic genome.  相似文献   

9.
4-OH-2,3-trans-nonenal (HNE), a major aldehydic lipid peroxidation product, has been shown to cause cellular toxicities and has been linked to a number of pathophysiological processes including atherogenesis. Specifically, in vitro exposure of erythrocyte plasma membrane preparations to HNE resulted in the inhibition of membrane transport function and integrity. To characterize the nature of the inhibitory effects of HNE on plasma membrane regulatory mechanisms, we investigated its effects on substrate and calmodulin (CaM) stimulation on erythrocyte Ca2+ transport and (Ca2+ + Mg2+)-ATPase activities. Concentration-effect relationship analysis in erythrocyte membrane "ghosts" and inside-out vesicles (IOVs) yielded purely noncompetitive kinetics for Ca2+, ATP, and CaM activation of (Ca2+ + Mg2+)-ATPase and Ca2+ transport. Reductions of Vmax from direct addition of 0.1 mM HNE to the assay incubation mixtures ranged from 23 to 41%. Similarly, pretreatment with HNE of both membrane ghosts and IOVs resulted in a concentration-dependent inactivation of ATPase and transport activities without changes in affinity for Ca2+, ATP, or CaM. Conversely, pretreatment of CaM itself did not impair its ability to stimulate (Ca2+ + Mg2+)-ATPase activity threefold. Moreover, HNE-pretreated membranes exhibited unaltered acetylcholinesterase activity compared to sham-pretreated membranes. Together, these results suggest that HNE may structurally, and thus irreversibly, modify one or more functionally important sites on the transport protein itself.  相似文献   

10.
Malignant hyperthermia (MH) is a potentially fatal, inherited skeletal muscle disorder in humans and pigs that is caused by abnormal regulation of Ca2+ release from the sarcoplasmic reticulum (SR). MH in pigs is associated with a single mutation (Arg615Cys) in the SR ryanodine receptor (RyR) Ca2+ release channel. The way in which this mutation leads to excessive Ca2+ release is not known and is examined here. Single RyR channels from normal and MH-susceptible (MHS) pigs were examined in artificial lipid bilayers. High cytoplasmic (cis) concentrations of either Ca2+ or Mg2+ (>100 microM) inhibited channel opening less in MHS RyRs than in normal RyRs. This difference was more prominent at lower ionic strength (100 mM versus 250 mM). In 100 mM cis Cs+, half-maximum inhibition of activity occurred at approximately 100 microM Mg2+ in normal RyRs and at approximately 300 microM Mg2+ in MHS RyRs, with an average Hill coefficient of approximately 2 in both cases. The level of Mg2+ inhibition was not appreciably different in the presence of either 1 or 50 microM activating Ca2+, showing that it was not substantially influenced by competition between Mg2+ and Ca2+ for the Ca2+ activation site. Even though the absolute inhibitory levels varied widely between channels and conditions, the inhibitory effects of Ca2+ and Mg2+ were virtually identical for the same conditions in any given channel, indicating that the two cations act at the same low-affinity inhibitory site. It seems likely that at the cytoplasmic [Mg2+] in vivo (approximately 1 mM), this Ca2+/Mg2+-inhibitory site will be close to fully saturated with Mg2+ in normal RyRs, but less fully saturated in MHS RyRs. Therefore MHS RyRs should be more sensitive to any activating stimulus, which would readily account for the development of an MH episode.  相似文献   

11.
The content of total RNA and DNA, activity of Ca2+, Mg(2+)-dependent DNA endonuclease, and ultrastructural changes in nerve tissue cells were examined in the brain cortex of narcotized dogs 1 to 3 months after a 4-hour hemorrhagic shock (arterial pressure 40 mm Hg). A new variant of reconstruction of cell membranes and organelles formed by them was revealed, developing in the brain neurons in the course of adaptation during the first-third months of the postshock period. Evidently, the molecular base of development of an atypical variant of cell structure rearrangement in the remote period after shock is the internucleosomal fragmentation of a part of the DNA of nerve cells resultant from DNA endonucleolysis and subsequent information disintegration of a cell as a system. This distorts the process of biosynthesis of supramolecular ensembles, specifically, of nerve cell biomembranes.  相似文献   

12.
Luminescence Properties of Eu~(2 ) and Mn~(2 ) Co-Doped Ca_8Mg(SiO_4)_4Cl_2   总被引:5,自引:1,他引:5  
The green phosphor for white LED, Ca8Mg(SiO4)4Cl2∶Eu2+, Mn2+, was synthesized by high temperature solid state reaction under reducing atmosphere. During the process of the phosphor prepared, the excess CaCl2 can improve the intensity of emission. The experimental results indicate that there is an effective energy transfer from Eu2+ to Mn2+in Ca8Mg(SiO4)4Cl2 host. This kind of energy transfer may be due to resonance transfer, and this energy transfer is limited.  相似文献   

13.
Accumulation of Li+ in Saccharomyces cerevisiae X2180-1B occurred via an apparent stoichiometric relationship of 1:1 (K+/Li+) when S. cerevisiae was incubated in the presence of 5 and 10 mM LiCl for 3 h. Other cellular cations (Mg2+, Ca2+ and Na+) did not vary on Li+ accumulation, although lithium chemistry dictates a degree of similarity to Group I and II metal cations. Compartmentation of Li+ was mainly in the vacuole which accounted for 85% of the Li+ accumulated after a 6-h incubation period. The remainder was located in the cytosol with negligible amounts being bound to cell fragments including the cell wall. Transmission electron microscopy of Li(+)-loaded cells revealed enlarged vacuoles compared with control cells. This asymmetric cellular distribution may therefore enhance tolerance of S. cerevisiae to Li+ and ensure that essential metabolic processes in the cytosol are not disrupted.  相似文献   

14.
The sucrose-induced stimulation of lysine influx in human erythrocytes has been attributed to the removal of a competitive inhibition exerted by Na+ on system y+ (Young, J. D., Fincham, D. A., and Harvey, C. M. (1991) Biochim. Biophys. Acta 1070, 111-118). We have reexamined this phenomenon separating the contribution of the two cationic amino acid transporters present in these cells (system y+ and system y+L). NaCl replacement with sucrose increased influx through system y+L, but decreased influx through system y+. We conclude that 1) the inhibition of system y+ is a response to the membrane depolarization that results from chloride removal, and 2) the stimulation of system y+L is due to the enhancement of the negative surface potential. Consistently, lysine influx through system y+L (in sucrose medium) was reduced by Na+, K+, Li+, and choline (K0.5 = 25-34 mM), the effect reaching a maximum at 35-40% of the original flux. Divalent cations (Ca2+ and Mg2+) were also inhibitory, but lower concentrations were required (K0.5 1.1-1.8 mM). The finding that sucrose stimulates uptake through changes in the surface potential explains similar effects observed in other cells with various cationic substrates.  相似文献   

15.
This study employs both dietary and physiological studies to investigate the relationship between calcium (Ca2+) and magnesium (Mg2+) signalling in the mammalian myocardium. Rats maintained on a low Mg2+ diet (LMD; 39 mg Kg-1 Mg2+ in food) consumed less food and grew more slowly than control rats fed on a control Mg2+ diet (CMD; 500 mg Kg-1 Mg2+ in food). The Mg2+ contents of the heart and plasma were 85 +/- 3% and 34 +/- 6.5%, respectively relative to the control group. In contrast, Ca2+ contents in the heart and plasma were 177 +/- 5% and 95 +/- 3%. The levels of potassium (K+) was raised in the plasma (129 +/- 16%) and slightly decreased in the heart (88 +/- 6%) compared to CMD. Similarly, sodium (Na+) contents were slightly higher in the heart and lowered in the plasma of low Mg2+ diet rats compared to control Mg2+ diet rat. Perfusion of the isolated Langendorff's rat heart with a physiological salt solution containing low concentrations (0-0.6 mM) of extracellular magnesium [Mg2+]o resulted in a small transient increase in the amplitude of contraction compared to control [Mg2+]o (1.2 mM). In contrast, elevated [Mg2+]o (2-7.2 mM) caused a marked and progressive decrease in contractile force compared to control. In isolated ventricular myocytes the L-type Ca2+ current (ICa,L) was significantly (p < 0.001) attenuated in cells dialysed with 7.1 mM Mg2+ compared to cells dialysed with 2.9 microM Mg2+. The results indicate that hypomagnesemia is associated with decreased levels of Mg2+ and elevated levels of Ca2+ in the heart and moreover, internal Mg2+ is able to modulate the Ca2+ current through the L-type Ca2+ channel which in turn may be involved with the regulation of contractile force in the heart.  相似文献   

16.
The mechanism by which 7,12-dimethylbenz[a]anthracene (DMBA) produces cytotoxicity in lymphocytes was investigated in these studies using the murine A20.1 B cell lymphoma. Results show that in vitro exposure of these cells to 10-30 microM DMBA for 4 hr produced an increase in intracellular Ca2+, DNA fragmentation, and subsequent cell death. Elevation of Ca2+ and DNA fragmentation induced by DMBA were greatly pronounced when the A20.1 cells were exposed at high cell density (10(7) cells/ml). DMBA-induced DNA fragmentation and cell death were inhibited by coexposure of A20.1 cells to a calcium chelator (EDTA), a general nuclease and polymerase inhibitor (aurintricarboxylic acid), and a protein synthesis inhibitor (cycloheximide). These agents have been previously shown to inhibit apoptosis in lymphocytes and other cells exposed to chemical agents. We also found that cyclosporin A, an inhibitor of Ca(2+)-dependent pathways of T and B cell activation, prevented apoptosis in the A20.1 cell line. These results demonstrate that DMBA induces programmed cell death (apoptosis) in the A20.1 murine B cell lymphoma by Ca(2+)-dependent pathways. The increased sensitivity of A20.1 at high cell density to Ca2+ elevation and DNA fragmentation suggests that cell to cell interactions may also be important in this process.  相似文献   

17.
By keeping intracellular Na+ (aiNa) low, the Na,K-pump can prevent Ca2+ overload of cardiomyocytes. We therefore examined whether Ca2+ stimulates Na,K-pump activity in sheep cardiac Purkinje fibers. By removing Ca2+, Mg2+ and K+, the fibers depolarized and aiNa rose to 70 mM. After addition of 6 mM Mg2+ and lowering extracellular Na2+ to 29 mM, 30mM Rb+ was added, and over 10-15 min aiNa recovered to 3-7 mM. Two load-recovery cycles were conducted in 10 fibers. During one of the cycles Ca2+ (0.1-1.0 mM) was added before Rb+, causing a contracture. During recovery aiNa fell faster during Ca2+ contracture than in control cycles. Between 30 and 20 mM the rates were -10.0+/-1.6 and -5.4+/-0.6 mM/min, respectively (P<0.05). In Ca2+-exposed fibers tension fell almost parallel with aiNa. Na, K-pump reactivation caused membrane potential (Vm) to hyperpolarize transiently to -70 mV. Ca2+ did not affect membrane conductance. For a given aiNa during reactivation, Vm was more negative during Ca2+ contracture and depolarized faster (P<0.05). Intracellular pH (pHi) fell from 7.11+/-0.05 to 6.92+/-0.08 (n.s.) during control load-recovery cycles and was 6.83+/-0.14 at the end of the Ca2+ cycles. ATP content of the fibers did not change significantly through two complete load-recovery cycles, but creatine phosphate (CrP) fell by about 40%. By fitting the data to a model incorporating the Hill equation we show that during Ca2+-induced contracture maximum Na,K-pump rate (Vmax) was increased by about 40% and aiNa that causes 50% pump activation (k0.5) was lowered from 21. 2+/-1.6 to 15.5+/-1.4 mM.  相似文献   

18.
We have quantified the binding of Ca2+ to platelet thrombospondin 1 (TSP1) using equilibrium dialysis with 45CaCl2. Ca2+ binding to TSP1 was found to be cooperative with 10% occupancy at 15-20 microM CaCl2, 90% occupancy at 100 microM CaCl2, and a Hill coefficient of 2.4 +/- 0.2 The average apparent Kd was 52 +/- 5 microM. Maximum binding, assuming Mr = 450,000 and epsilon = 0.918 (A280/mg/ml), was 35 +/- 3 Ca2+/TSP1. This value is close to the 33 sites (11 per subunit) predicted based on homology of the epidermal growth factor (1 site) and aspartate-rich (10 sites) regions to known Ca2+ binding sequences. Ca2+ protected the aspartate-rich region from trypsin proteolysis, but not until nearly all of the Ca2+ binding sites were filled. At lower occupancy of Ca2+ binding sites, several limited tryptic digest products were obtained. This finding and the previous demonstration of extensive thiol-disulfide isomerization within the aspartate-rich regions suggest that subregions of the aspartate-rich region are stabilized in different conformers. Zn2+, Cu2+, Mn2+, Mg2+, Co2+, Cd2+, and Ba2+ were tested for their ability to modulate Ca2+ binding and protease sensitivity of TSP1. Zn2+ inhibited 40% of the Ca2+ binding but neither protected TSP1 from trypsin proteolysis, nor labilized TSP1 toward trypsin proteolysis. These results provide direct evidence for high capacity, cooperative and specific binding of Ca2+ to conformationally labile aspartate-rich repeats of TSP1.  相似文献   

19.
Ultraviolet light (UV) induced rapid apoptosis of U937 leukemia cells, concurrent with DNA fragmentation and cleavage of poly(ADP-ribose)polymerase (PARP) by activated caspase-3. The in vitro reconstitution of intact HeLa S3 nuclei and apoptotic U937 cytosolic extract (CE) revealed that (i) Ca2+/Mg(2+)-dependent, Zn(2+)-sensitive endonuclease activated in the apoptotic CE induced DNA ladder in HeLa nuclei at pH 6.8-7.4, (ii) activated caspase-3 cleaved PARP in HeLa nuclei, and (iii) when the apoptotic CE was treated with the caspase-3 inhibitor (1 microM Ac-DEVD-CHO) or the caspase-1 inhibitor (10 microM Ac-YVAD-CHO), the former, but not the latter, caused a 50% inhibition of DNA fragmentation and the complete inhibition of PARP cleavage in HeLa nuclei. Similarly, Ac-DEVD-CHO (100 microM) inhibited apoptosis and DNA ladder by 50% and PARP cleavage completely in UV-irradiated U937 cells, but Ac-YVAD-CHO (100 microM) did not. Thus, UV-induced apoptosis of U937 cells involves the Ca2+/Mg(2+)-dependent endonuclease pathway and the caspase-3-PARP cleavage-Ca2+/Mg(2+)-dependent endonuclease pathway. The former pathway produced directly 50% of apoptotic DNA ladder, and the latter involved activated caspase-3 and PARP cleavage, followed by formation of the remaining 50% DNA ladder by the activated endonuclease. In UV-irradiated B-cell lines, further, p53-dependent increase of Bax resulted in a greater caspase-3 activation compared to its absence. However, UV-induced activation of JNK1 and p38 was not affected by the caspase-1 and -3 inhibitors in U937 cells, so that caspases-1 and -3 do not function upstream of JNK1 and p38.  相似文献   

20.
In bovine tracheal smooth muscle, carbachol (CCh, 1 microM) and high K+ (72.7 mM) induced sustained increases in cytosolic Ca2+ level ([Ca2+]i), myosin light chain (MLC) phosphorylation and force of contraction. Forskolin (FK, 1-10 microM) inhibited the CCh-induced increase in [Ca2+]i, MLC phosphorylation and force in parallel. In contrast, FK inhibited the high K(+)-induced contraction and MLC phosphorylation without changing [Ca2+]i. In the absence of extracellular Ca2+ (with 0.5 mM EGTA), CCh (10 microM) and caffeine (20 mM) induced transient increase in [Ca2+]i and contractile force by releasing Ca2+ from cellular store. FK strongly inhibited the CCh-induced Ca2+ transient, but failed to inhibit the caffeine-induced Ca2+ transient. In the absence of external Ca2+, 12-deoxyphorbol 13-isobutylate (DPB, 1 microM) induced sustained contraction without increase in [Ca2+]i and MLC phosphorylation. FK inhibited this contraction without changing [Ca2+]i. In permeabilized muscle, Ca2+ induced contraction in a concentration-dependent manner. FK (10 microM) and cAMP (1-100 microM) shifted the Ca(2+)-force curve to the higher Ca2+ levels. CCh with GTP, GTP gamma S or DPB enhanced contraction in the presence of constant level of Ca2+. Forskolin and cAMP also inhibited the enhanced contractions in the permeabilized muscle. In the permeabilized, thiophosphorylated muscle, ATP induced contraction in the absence of Ca2+. cAMP (300 microM) had no effect on this contraction. These results suggest that forskolin inhibits agonist-induced contraction in tracheal smooth muscle by multiple mechanisms of action; 1) inhibition of MLC phosphorylation by reducing Ca2+ influx and Ca2+ release, 2) inhibition of MLC phosphorylation by changing the MLC kinase/phosphatase balance, and 3) inhibition of regulatory mechanism which is not dependent on MLC phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号