首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of Fe-Cr-C hardfacing alloys is deposited by gas tungsten arc welding and subjected to abrasive wear testing. Pure Fe with various amounts of CrC (Cr:C=4:1) powders are mixed as the fillers and used to deposit hardfacing alloys on low carbon steel. Depending on the various CrC additions to the alloy fillers, the claddings mainly contain hypoeutectic, near eutectic, or hypereutectic microstructures of austenite γ-Fe phase and (Cr,Fe)7C3 carbides on hardfacing alloys, respectively. When 30% CrC is added to the filler, the finest microstructure is achieved, which corresponds to the γ-Fe+(Cr,Fe)7C3 eutectic structure. With the addition of 35% and 40% CrC to the fillers, the results show that the cladding consists of the massive primary (Cr,Fe)7C3 as the reinforcing phase and interdendritic γ-Fe+(Cr,Fe)7C3 eutectics as the matrix. The (Cr,Fe)7C3 carbide-reinforced claddings have high hardness and excellent wear resistance under abrasive wear test conditions. Concerning the abrasive wear feature observable on the worn surface, the formation and fraction of massive primary (Cr,Fe)7C3 carbides predominates the wear resistance of hardfacing alloys. Abrasive particles result in continuous plastic grooves when the cladding has primary γ-Fe phase in a hypoeutectic structure.  相似文献   

2.
李达  孙兵  刘伟  李森 《表面技术》2013,42(5):48-51
采用正交试验方法设计了几种铁基合金系堆焊粉末,利用水等离子火焰机在Q345钢板上进行堆焊,分析了Cr,Mo,Si,C添加量对堆焊层硬度、显微组织及磨损性能的影响。结果表明:堆焊层中含有大量的M7C3初生碳化物及共晶组织,最高硬度可达到56.8HRC,耐磨性较好,Cr和C对堆焊金属的耐磨性影响最大。试验表明,采用水等离子火焰机可以较好地进行粉末堆焊。  相似文献   

3.
杨庆祥  赵斌  员霄  蹤雪梅  周野飞 《表面技术》2015,44(4):42-47,53
目的研制一种新型添加纳米Y2O3的过共晶Fe-Cr-C堆焊合金,改善堆焊合金粗大的初生M7C3碳化物,提高堆焊合金的耐磨性。方法采用明弧堆焊的方法制作堆焊合金,用金相电子显微镜对其表面微观组织进行观察,用洛氏硬度计对其表面硬度进行测量,用砂带摩擦磨损试验机对其表面耐磨性进行评价,用扫描电子显微镜对其磨损形貌进行观察。最后,利用错配度理论对M7C3的细化机理进行分析。结果过共晶Fe-Cr-C堆焊合金由初生M7C3和共晶组织(共晶M7C3、奥氏体及部分马氏体)组成。未添加Y2O3的堆焊合金初生M7C3比较粗大,其平均尺寸在22μm,硬度为55HRC,磨损量为0.85mg/mm2。经纳米Y2O3改性之后,堆焊合金的初生M7C3尺寸变小,其平均尺寸为16μm,硬度为57HRC,磨损量减少为0.59 mg/mm2,Y2O3的(001)面与正交M7C3的(100)面之间的二维错配度为8.59%。结论 Y2O3可以成为M7C3的非均质形核核心,从而细化了过共晶Fe-Cr-C堆焊合金的初生M7C3碳化物,提高了过共晶Fe-Cr-C堆焊合金表面耐磨性。  相似文献   

4.
Abstract

Different amounts of TiB2 powder were added to flux cores of wear resistant hardfacing flux cored wires for the preparation of new flux cored wires. Fe–Cr–C hardfacing alloys reinforced with TiB2 were produced by arc hardfacing. The microstructure, hardness and wear resistance behaviour of the hardfacing alloys were investigated using an optical micrograph, scanning electron micrograph (SEM), X-ray diffractometer, macrohardness tester, microhardness tester and abrasive wear tester. The results showed that, among the hardfacing alloys, a new hard phase, i.e. TiC–TiB2 composite compound particles, was formed and dispersed in the primary carbides and matrix structures. The TiC–TiB2 reinforced Fe–Cr–C hardfacing alloys imparted greater hardness and better wear resistance. The presence of TiC–TiB2 hard phase particles is the main reason for the improvement in hardness and wear resistance of Fe–Cr–C hardfacing alloys.  相似文献   

5.
In this paper, a multiple carbide particle reinforced Fe-based surface coating has been in situ synthesized by gas tungsten arc welding (GTAW) melting a precursor mixture of graphite, ferrotitanium (Fe-Ti) and ferrovanadium (Fe-V) alloy powders on AISI 1020 steel substrate. The microstructure and wear properties of the Fe-based surface hardfacing layers were investigated by means of a scanning electron microanalysis (SEM), X-ray diffractometer (XRD) and wear tester. The results showed that (Ti,V)C multiple carbide particle and TiC carbide particle can be synthesized via reaction of Fe-Ti, Fe-V and graphite during GTAW melting process. The selection area diffraction pattern (SADP) analysis indicated that (Ti,V)C crystallizes with the cubic structure, which indicates that (Ti,V)C carbides were multiple carbides with V dissolved in the TiC structure. The Fe-based surface hardfacing layer reinforced by multiple carbides gave an excellent wear resistance and appeared a mild wear with fine scratches.  相似文献   

6.
高铬铸铁芯焊条堆焊层组织分析   总被引:1,自引:0,他引:1       下载免费PDF全文
徐锦锋  唐桢  任永明  翟秋亚 《焊接学报》2012,33(8):57-59,64
基于焊芯过渡合金元素的技术思路,研制了高铬合金铸铁同质堆焊焊条.分析了不同药皮堆焊焊条的堆焊层组织及性能,定量表征了合金元素的过渡系数.结果表明,通过焊芯过渡合金元素的高铬合金铸铁堆焊焊条可获得组织和性能均匀的堆焊层.合金过渡系数高于85%.碱性药皮堆焊焊条堆焊层为亚共晶成分高铬合金铸铁,组织由奥氏体γ+马氏体M+碳化物Cr7C3组成.堆焊层硬度为44.5~56.5HRC.碱性石墨化型药皮堆焊焊条堆焊层组织由初生碳化物Cr7C3+马氏体M+碳化物Fe7C3+少量石墨G组成,堆焊层硬度可达59~67HRC.  相似文献   

7.
氩弧熔覆 TiC 颗粒增强 Fe 基涂层组织性能研究   总被引:1,自引:1,他引:0  
王泽旺  张寰  赵程 《表面技术》2014,43(5):51-54,75
目的研究氩弧熔覆条件下TiC颗粒增强Fe基涂层的组织和性能。方法在Fe45自熔性合金粉末中添加TiC颗粒,利用氩弧熔覆技术在Q235钢基材表面制备出含TiC颗粒增强的Fe基合金复合涂层,并对熔覆层的显微组织结构、硬度分布及耐磨性能进行分析研究。结果复合涂层是由(Fe,Ni)形成的枝晶和枝晶间的(Fe,Cr)23(C,B)6,Fe3(C,B)共晶组织以及TiC增强颗粒组成,TiC颗粒细小弥散分布在基体金属内,部分TiC颗粒聚集生长为棒状、十字状和放射状。结论熔覆层的显微硬度最高可达980HV,较Q235钢提高了4倍,耐磨性提高了约11倍。  相似文献   

8.
张彦超  崔丽  贺定勇  周正 《焊接学报》2014,35(3):89-92104
采用直径为1.6 mm的细径药芯焊丝,利用CO2气体保护焊堆焊的方法制备了含有1.0%~3.0%C(质量分数),15%~20%Cr,0%~2.0%B的高铬堆焊合金.研究了B4C含量对堆焊合金的硬度及耐磨性的影响.结果表明,堆焊合金的硬度从57.1 HRC增加到65.2 HRC,硬度提高14.2%;堆焊层合金的相对耐磨性从3.5倍提高到18.0倍.借助光学显微镜、扫描电镜和X射线衍射等微观分析方法,研究了堆焊合金的显微组织及碳化物分布形貌.结果表明,堆焊合金的显微组织主要由铁素体+奥氏体+(Fe,Cr)7C3组成,加入B4C可显著改善堆焊合金层基体组织,使碳化物(Fe,Cr)7C3数量增加且呈弥散分布.  相似文献   

9.
Fe-Cr-V耐磨堆焊合金   总被引:2,自引:0,他引:2       下载免费PDF全文
制备了用于埋弧焊药芯焊丝的Fe-Cr-V堆焊合金,其成份(质量分数,%)为c0.9~1.5,Cr 13~15,V 1.0-2.0.借助光学显微镜、扫描电镜和X射线衍射等手段,研究了其显微组织,并考察V和B4C含量对该堆焊合金性能的影响.Fe-Cr-V堆焊合金的显微组织由铁素体 马氏体 (Cr,Fe)23C6等碳化物组成.电子能谱微区分析显示Cr,V元素晶界含量显著高于晶内,随WC加入量提高,晶界与晶内含量差距增大.由于沿晶界析出碳化钒,这使(Cr,Fe)23C6等晶界碳化物呈条状或断续网状分布,起到耐磨骨架作用,避免了网状形态的强烈脆性.结果表明,其磨粒磨损性能显著优于实心焊丝H25Cr3Mo2MnV堆焊合金.  相似文献   

10.
对Fe-1.4C-15Cr合金分别进行了粒化处理(水淬+回火)。借助光学显微镜、XRD、冲击韧性和硬度测试,研究粒化处理对其性能的影响。结果表明,粒化处理后,其显微组织中连续网状的合金碳化物明显溶解,大部分粗大的网状结构己减少或消失,合金碳化物以不连续的短棒状或颗粒状均匀分布在基体中,Fe-1.4C-15Cr合金的硬度由32.5HRC提高到40.9HRC,而韧性由9.1J·cm-2提高到10.1J·cm-2。  相似文献   

11.
《Intermetallics》1999,7(8):947-955
In this study we have tried to produce the titanium carbide reinforced iron aluminide composites by in-situ reaction between titanium and carbon in liquid iron–aluminum alloy doped with titanium and carbon. A homogeneous distribution of titanium carbide particles in the iron aluminide matrix up to about 16 vol% of titanium carbide was intended without agglomeration. The composition of TiC formed during in-situ reaction was investigated by ICP analysis and the Combustion-Infrared Absorption method after chemical dissolution of the iron aluminide matrix. It is found that the composition of titanium carbide formed during melt processing is an average of Ti–48.4 mol% C. In addition, titanium carbide has very low solubility of Fe and Al. The microstructure of composites consists of three different regions; primary large TiC particles of 5–40 μm, matrix with small dendritic TiC particles of about 1 μm and particle-free regions around primary large TiC particles. The formation of this complex microstructure can be explained by assuming the Fe3Al–TiC pseudo-binary system containing the eutectic reaction. Particle-free regions are halos of iron aluminide phase and the formation of halos is explained by coupled zone concept. Subsequent heat treatment at 1373 K for 48 h induces spheroidization and/or coarsening of small TiC particles, while microstructure after heat treatment at 973 K for 48 h exhibits the additional formation of small TiC precipitates. Though excess 1 mol% Ti addition over the Ti content for TiC formation is soluble to Fe–28 mol% Al, excess 1 mol% C addition forms the secondary Fe3AlC phase during melt processing.  相似文献   

12.
Fe-Cr-C系高碳高铬耐磨堆焊合金微观组织分析   总被引:6,自引:0,他引:6       下载免费PDF全文
研究了C元素含量6.0%左右时改变Cr元素含量和Cr元素含量40%左右时改变C元素含量两种情况下Cr及C元素各自对Fe-Cr-C合金堆焊层组织的影响.结果表明,C和Cr元素增加时,初生碳化物的量增加.初生碳化物随着C元素和Cr元素的增加,形态越来越规则,分布越来越密集,初生碳化物颗粒的单个尺寸增大.C元素含量6.0%左右,Cr元素含量增大时,初生碳化物微区Cr元素含量增加;而当Cr元素含量40%左右,C元素含量增加时,初生碳化物微区Cr元素含量反而降低.  相似文献   

13.
贾华  高明  刘政军 《焊接学报》2023,44(3):87-91
改变Ti或Nb的添加量制备Fe-Cr-C-B系铁基堆焊合金.借助扫描电镜、X射线衍射仪、洛氏硬度计和磨损试验机对堆焊合金组织性能进行测试分析.结果表明,在含Ti或Nb的堆焊合金中,初生奥氏体晶粒细化,共晶组织呈断网状均匀分布,并分别有黑色圆形或块状TiC和菱形或三角形NbC硬质相颗粒生成,添加5%Ti的堆焊合金组织最细小.TiC或NbC硬质相颗粒在组织中呈均匀弥散分布,能够作为耐磨质点与细化的初生奥氏体和共晶组织构成耐磨骨架,共同抵抗磨粒的楔入与切削作用.当Ti添加量为5%时,含Ti堆焊合金达到最优耐磨性,硬度为66 HRC,磨损量为0.048 7 g;当Nb添加量为4%时,含Nb堆焊合金达到最优耐磨性,硬度为65 HRC,磨损量为0.052 4 g.在同等条件下,含有适量Ti的铁基堆焊合金具有更优的耐磨性.  相似文献   

14.
截齿表面感应熔覆WC增强Fe基熔覆层的研究   总被引:1,自引:1,他引:0  
采用高频感应熔覆技术在采煤机截齿前端表面制备高耐磨的WC增强Fe基熔覆层,结果表明:熔覆层与基体为冶金结合,组织主要为奥氏体、鱼骨状共晶体及少量WC,增强相由(Cr,Fe)7C3,WC,Fe3 W3C及Fe3C等组成,熔覆层厚度约2 mm,硬度达63.6HRC,显微硬度平均值为1 007.9HV0.3,耐磨性为基体的4...  相似文献   

15.
The relationship between secondary carbide precipitation and transformation of the 16Cr-1Mo-1Cu white iron and abrasion resistance were investigated. The results show that secondary carbide precipitation and transformation at holding stage play an important role in the hardness and abrasion resistance. After being held for a certain time at 853 K for subcritical treatment, the grainy secondary carbide, (Fe,Cr)23C6, precipitated first and then Fe2MoC or MoC carbides precipitated in the alloy, both of which improve the bulk hardness and abrasion resistance of the alloy. The reasons for these improvements are the secondary carbide precipitates from the austenite and the retained austenite transforms into the martensite, both make the matrix strengthen. So the matrix has more effective support to the harder eutectic carbide against exterior abrasion. With expanding the holding time, the in situ transformation from the granular (Fe,Cr)23C6 carbide into laminar M3C carbide causes the formation of the pearlitic matrix and an associated decrease of the alloy abrasion resistance.  相似文献   

16.
NbC增强Fe-Cr-C耐磨堆焊合金组织与磨粒磨损性能   总被引:2,自引:1,他引:1       下载免费PDF全文
以H08A为焊芯,在Fe-Cr-C耐磨合金焊条药皮中加入NbC,对堆焊层组织及NbC对堆焊层硬度和耐磨性的影响进行了研究.结果表明,NbC增强Fe-Cr-C耐磨合金的宏观硬度和耐磨性都高于Fe-Cr-C合金,宏观硬度达到61.6 HRC,比Fe-Cr-C耐磨合金提高9.6%;相对耐磨性提高60%.NbC增强Fe-Cr-C耐磨合金中NbC硬质相断面呈不规则形状,分布于M7C3之间,或镶嵌在M7C3中,以菱形或多边形居多,NbC分布不均匀,有局部聚集的区域.与Fe-Cr-C耐磨合金的共晶碳化物比较,Fe-Cr-C-NbC合金的共晶碳化物要粗大,共晶碳化物的间距也较大.  相似文献   

17.
FeCrBSi alloy powder with higher Cr content was used for laser cladding by employing a 3 kW solid-state laser. Ni- and Fe-based alloy powders, which were more resistant to cracking, were added into FeCrBSi alloy powder with higher Cr content to increase the ductile phases, lower thermal expansion coefficient, and reduce the crack sensitivity of the cladding layer. FeCrBSi alloy powder with higher Cr content combined Ni- and Fe-based alloy powder were cladded on the substrates, which yield two different phases. The hard phases of the cladding layer were mainly composed of carbide phase M23C6, and the ductile phases which played a lubrication function in the cladding layer were mainly composed of austenite γ-Fe and γ-Ni. The ductile phases increased by adding Ni- and Fe-based alloy powder into FeCrBSi alloy powder with higher Cr content, and the hard phases became sparser relatively. Smooth cladding layers, which were free of macroscopic pores, cracks and void between the adjacent tracks, were achieved. Therefore, the toughness of the cladding layer was improved, and the crack tendency was reduced. Three kinds of composite powder were obtained. The composition and morphology of the cladding layer were analyzed, and the microhardness between the hard phases and the ductile phases was compared. The average microhardnesses of the three cladding layers varied from HV0.2 760 to HV0.2 950.  相似文献   

18.
Abstract

The iron based hardfacing alloys were produced using slag free self-shielded flux cored wires with varying niobium contents. The results show that NbC acted as the nucleus of primary M7(C, B)3 (M?=?Cr, Fe mainly) carbides and decreased the amount of M7(C,B)3 carbides when niobium was added into the alloys. When 18?wt-%Fe–Nb (60?wt-%Nb) was added, the microstructure of hardfacing alloy transformed from hypereutectic structure to a eutectic one due to the formation of NbC, which consumed a mass of carbon. The microstructure changed into a hypoeutectic structure when the Fe–Nb content was up to 24?wt-%. With the increase in Fe–Nb content, the main abrasive wear mechanism changed from microcracking to microcutting and microploughing due to the formation of NbC and the reduction of primary M7(C, B)3 carbides. The wear loss of the alloy with 18?wt-%Fe–Nb addition was the smallest among all the alloys.  相似文献   

19.
反应等离子熔覆Fe-Cr-Ti-C涂层的组织与性能   总被引:1,自引:1,他引:0       下载免费PDF全文
采用等离子表面熔覆技术,以高能等离子束为热源在Q235基体钢板上熔覆无钛以及含钛(其它粉末成分基本不变)的铁基合金涂层.利用光学显微镜(OM)、扫描电镜(SEM)、X射线衍射仪(XRD)、电子探针(EPMA)、显微硬度计对涂层的组织、相组成和显微硬度等进行分析.结果表明,与无钛铁基粉末涂层相比,含钛铁基合金熔覆层晶粒组织明显细化,且含有较多带状晶,但随着合金粉末中钛含量的增多,熔覆层共晶组织中硬质相(Cr,Fe)7C3逐渐增多,抑制了硬质相的析出,熔覆涂层的平均和最高显微硬度值也相应降低.  相似文献   

20.
Most previous researches focused on small casting ingots prepared by arc melting, when studying high-entropy alloys. Large sized ingots were also necessary in exploring the existence of volume effects in the multi-principal element alloys. During the experiments, a large sized CoCrFeNiTi0.5 alloy casting ingot was prepared by a medium frequency induction melting furnace. A slight volume effect occurred, reflecting mainly in the growth of crystalline grains and the increase of alloy hardness in the ingot. To investigate the effect of annealing temperature on microstructure and properties of CoCrFeNiTi0.5 alloy, several samples taken from the ingot were annealed at 600 °C, 700 °C, 800 °C and 1000 °C respectively for 6 h. Almost no effects were found to the crystalline structure and elemental distribution when the samples were annealed below 1000 °C. The crystalline structure of CoCrFeNiTi0.5 alloy was composed of one principal face-centered cubic (FCC) solid-solution matrix and a few intermetallic phases in the form of interdentrite. Dendrite contained approximately equivalent amount of Co, Cr, Fe, Ni and a smaller amount of Ti. When annealed below 1000 °C, the interdendrite stayed in (Ni, Ti)-rich phase, (Fe, Cr)-rich phase and (Co, Ti)-rich phase. After 1000 °C annealing, (Co, Ti)-rich phase disappeared, while (Ni, Ti)-rich phase and (Fe, Cr)-rich phase grew. The microhardness of the as-cast CoCrFeNiTi0.5 alloy was 616.80 HV and the macrohardness was 52 HRC. The hardness of the samples stayed generally unchanged after annealing. This indicated a high microstructure stability and excellent resistance to temper softening that the CoCrFeNiTi0.5 alloy exhibited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号